

Akio Tomiya (IPUT Osaka, Assistant Prof.)

akio_at_yukawa.kyoto-u.ac.jp

Machine learning and Lattice QCD

https://indico2.riken.jp/event/4385/contributions/20396/

15 Feb 2023, 10:00 - 10:45

Challenges and opportunities in Lattice QCD simulations and related fields

R-CCS,15-17 February 2023

RIKEN R-CCS in person

https://twitter.com/TomiyaAkio
https://indico2.riken.jp/event/4385/contributions/20396/

• How to treat gauge fields with neural networks?

• Julia language on Fugaku, lattice code in Julia

Outline

2

How to treat gauge fields
with neural networks?

3

Akio Tomiya

4

Neural network have been good job
Applications of neural network in natural science

https://horomary.hatenablog.com/entry/2021/10/01/194825

https://www.aist.go.jp/aist_j/press_release/pr2020/pr20201111/pr20201111.html

Score:

Higher is better

Variational energy

(lower is better)

of units ∝

Folding of protein (AlphaFold2, John Jumper+, Nature, 2020+)

Neural net + Expert knowledge → Best performance

Neural network wave function for many body (Carleo Troyer, Science 355, 602 (2017))

5

Affine transformation + element-wise transformation

Akio Tomiya

⃗z(l) = W(l) ⃗u (l−1) + ⃗b (l)

{
Layers of neural nets

u(l)
i = σ(l)(z(l)

i)

Affine transf.

element-wise (local)

fθ(⃗x) = σ(3)(W(3)σ(2)(W(2) ⃗x + ⃗b (2)) + ⃗b (3))
A fully connected neural net

Neural network = map between vectors and vectors

 is a set of parameters: θ w(l)
ij , b(l)

i , ⋯

What is neural networks?

(b=0 called linear transf.)

, l = 2,3,⋯, L ⃗u (1) = ⃗x

Physicists terminology: Variational transformations

6

What is the neural networks?
Neural network is a universal approximator

Akio Tomiya

1

2

Neural net

Images of “1”

Images of “2”

=

0.000
0.000
0.8434
0.756
0.3456
0.64
0.251

⋮

Image is a vector
(6x6=36 dim)

Fact: Neural network can mimic any function 
 = A systematic variational function.

In this example, NN mimics image (36-dim vector) and label (10-dim vector)

36 dimension
10 dimension

Input

6x6

“0” = (1,0,0,…) 
“1” = (0,1,0,…) 
“2” = (0,0,1,…) 
… 
“9” = (0,0,…,1)

Example: Recognition of hand-written numbers

= ⃗x

⃗x

W (2) W (3)

ML for LQCD is needed
• Neural networks

• Data processing techniques mainly for 2d
image (a picture = pixels = a set of real #)

• Neural network helps data processing 
e.g. AlphaFold2

• Lattice QCD requires numerical effort 
but is more complicated than pictures

• 4 dimension

• Non-abelian gauge d.o.f. and symmetry

• Fermions (Fermi-Dirac statistics)

• Exactness of algorithm is necessary

• Q. How can we deal with neural nets?

7

http://www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/QCDvacuum/

8

Gauge covariant neural network
= trainable smearing

Akio Tomiya

Gauge covariant neural network = General smearing with tunable parameters w

z(l)
μ (n) = w(l)

1 U(l−1)
μ (n) + w(l)

2 𝒢(l)
θ̄

[U]

𝒩(z(l)
μ (n)){

Gauge covariant variational map: Uμ(n) ↦ UNN
μ (n) = UNN

μ (n)[U]

Train (tune, fitting)

AT Y. Nagai arXiv: 2103.11965

Smearing = Gauge covariant way of transform gauge configurations

Uμ(n) → Usmr
μ (n) = 𝒩 [(1 − α)Uμ(n) +

α
6

V†
μ[U](n)] V†

μ[U](n) = ∑
μ≠ν

Uν(n)Uμ(n + ̂ν)U†
ν (n + ̂μ) + ⋯

𝒩 [M] =
M

M†M
Normalization or projection

Covariant sum

UNN
μ (n)[U] = U(4)

μ (n)[U(3)
μ (n)[U(2)

μ (n)[Uμ(n)]]]

point-wise (local)

Gauge covariant NN:

Staple

Alternative realization of gauge symmetric neural net: gauge equivariant neural net -> Tilo Wettig’s talk

Parametrized function

Akio Tomiya

9

Gauge covariant neural network
Schematic illustrations for neural networks (NN)

SD[UNN[U]]

UNN[U]U

Cat

Convolution Dense NN

Covariant NN
(Tunable smearing)

Parameters θ Parameters θ

Parameters θ

Parametrized function

Tune by backprop (training)

Tune by backprop (training)

AT Nagai 2103.11965

Neural networks for images

Neural networks for gauge configurations

Wilson loop
Dirac op.
(Functional

of configurations)

http://www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/QCDvacuum/

SD[U]

Dog
Ans

“Ans”

Alternative realization of gauge symmetric neural net: gauge equivariant neural net -> Tilo Wettig’s talk

10

Gauge covariant neural network
= trainable smearing

Akio Tomiya

Dictionary

AT Y. Nagai arXiv: 2103.11965

(convolutional) 
Neural network

Gauge Covariant

Neural network

Input Image 
(2d data, structured)

gauge config

(4d data, structured)

Output Image 
(2d data, structured)

gauge config

(4d data, structured)

Symmetry Translation Translation, rotation(90°),
Gauge sym.

Gauge sym

with Fixed param Image filter (APE/stout …) Smearing

Local operation Summing up nearest
neighbor with weights

Summing up staples
with weights

Activation function Tanh, ReLU, sigmoid, … projection/normalization
in Stout/HYP/HISQ

Formula for chain rule Backprop “Smeared force
calculations” (Stout)

Training? Backprop + Delta rule AT Nagai 2103.11965

Well-known

(Index i in the neural net corresponds to n & μ in smearing. Information processing with NN is evolution of scalar field)

11

SLHMC for gauge system with dynamical fermions

Akio TomiyaSLHMC = Exact algorithm with ML

HMC U U U U U U

U′￼U

π

ϕ

π′￼

ϕ M
et

ro
po

lis

G
au

ss Eo
m

Eo
m

Eo
m

Eo
m

Eo
m

Eom Metropolis
Both use

HHMC =
1
2 ∑ π2 + Sg + Sf

Self

Learning

HMC

U U U U U U

U′￼U

π

ϕ

π′￼

ϕ M
et

ro
po

lis

G
au

ss Eo
m

Eo
m

Eo
m

Eo
m

Eo
m

Eom

Metropolis

H =
1
2 ∑ π2 + Sg + Sf[U]

H =
1
2 ∑ π2 + Sg+Sf[UNN[U]]

Neural net approximated

fermion action but exact

Non-conservation of H cancels since

the molecular dynamics is reversible

arXiv: 2103.11965  
and reference therein SLHMC works as an adaptive reweighting!

Gauge covariant neural network can mimics gauge invariant functions
-> It can be used in simulation? -> Self learning HMC!

12

Problems to solve

Akio TomiyaApplication for the staggered in 4d
arXiv: 2103.11965

Mimic different action (Dirac operator):

Action in MD Sθ[U] = Sg[U] + Sf[ϕ, UNN
θ [U]; mh = 0.4],

Target action
(Metropolis) S[U] = Sg[U] + Sf[ϕ, U; m = 0.3],

{

(Final target: Domain-wall vs overlap)

A toy problem: Staggered (heavy) vs Staggered (light)

U U U U U U

U′￼U

π

ϕ

π′￼

ϕ M
et

ro
po

lis

G
au

ss Eo
m

Eo
m

Eo
m

Eo
m

Eo
m

SLHMC works as an adaptive reweighting! 12

Eom

Metropolis

H =
1
2 ∑ π2 + Sg + Sf[U]

H =
1
2 ∑ π2 + Sg+Sf[UNN[U]]

Neural net approximated

fermion action but exact

Self

Learning

HMC

mimic

Akio Tomiya

13

Application for the staggered in 4d
Results are consistent with each other

Expectation value

arXiv: 2103.11965

Implemented by

Julia language on Fugaku,
Lattice code in Julia

14

(LatticeQCD.jl and GomalizingFlow.jl)

15

1.Open source scientific language (Just in time compiler/LLVM backend)

2.Fast as C/Fortran (faster sometimes), Practical as Python

3.Machine learning friendly

Compiler
Benchmark 

(sec)
single core

Type Parallelism GPU Pros👍 Cons👎
Column,
row Note

Julia
(1.8)

JIT,
LLVM 0.0014 Dynamic

& Static
MPI,

others CUDA
Fast 

Practical

ML feiendly

not major column-
major

C Clang
(LLVM) 0.0033 Static MPI,

others CUDA Fast Long
codes row-major

Python 
+Numba

(CPython)

JIT, LLVM 0.0131 Dynamic Available Numba-

CUDA
Practical

ML feiendly
Not fully

supported
row-major
(Numpy)

(Rosetta2  
is used in

benchmark)

Benchmark: Multiplications for 12dim vector and 12x12 complex matrix for 10^4 times (repeated 10 times)
Benchmarks are performed on m1 mac mini (similar tendency on Xeon)

Benchmark
Speed of Julia ~ Clang

Akio Tomiya

15

C and Julia have similar speed

16

Benchmark
Code comparison

Akio Tomiya

16

using Random

function main()

T = 10

K = 10^4

N = 12

#

A = zeros(ComplexF64, (N,N))

V = zeros(ComplexF64, N)

W = zeros(ComplexF64, N)

function myprod(A,V,W)

 for k = 1:N

 for i = 1:N

 W[i] += A[i, k]*V[k]

 end

 end

end

…(cut)…

#include <stdio.h>

#include <complex.h>

#include <math.h>

#include <time.h>

#include <stdlib.h>

#define T 10

#define K 10000

#define N 12

…(cut)…

void myprod(double complex A[N][N], double complex *V,

 double complex *W) {

 for (int k = 0; k < N; k++) {

 for (int i = 0; i < N; i++) {

 W[i] += V[k] * A[k][i];

 }

 }

}

…(cut)…

• Complex matrix (12x12) times complex vector (d=12)

• One set= 10^4 times, and repeated 10 times and averaged

• Code of Julia looks like Python (short, simple) but fast as C 
Julia: 0.0014 (sec), C: 0.0033 (sec). Single core performance is similar

I thank Taku Izubuchi

Attached in backup
Attached in backup

17

Benchmark
Why Julia? (My personal opinion)

Akio Tomiya

17

• Modern scientific programming language

• Easy to make codes. Fast as C/C++ (Julia& C use LLVM)

• Fewer compiling/dependency issues.

• Many people are potentially interested in. (More than 400 people registered to  
“Julia in physics 2022 online workshop” [1]). 4,923 public repo on Github

• No two Language problem. “The fact that while the users are programming in
a high-level language such as R and Python, the performance-critical parts
have to be rewritten in C/C++ for performance”. [2]

• Neural network friendly (Flux.jl). Tensor networks also (iTensor.jl).

• Works on/with

• Xeon, Radeon/Apple silicon/A64FX

• MPI, GPU

[1] https://akio-tomiya.github.io/julia_in_physics/
[2] https://qr.ae/prgSG5

https://qr.ae/prgSG5

18

LLVM?
LLVM = common backend for making binaries on multiple architectures

Akio Tomiya

Julia Compiler

(Just in time)

“Clang” Compiler

(Ahead of Time)

LLVM-optimizer&

LLVM-backend

const K = 5

const N = 1000

A = zeros(Float64, (N,N))

B = zeros(Float64, (N,N))

C = zeros(Float64, (N,N))

#include <stdio.h>

#define K 5

#define N 1000

double A[N][N];

double B[N][N];

double C[N][N];

Execution

https://ja.wikipedia.org/wiki/Ryzen
https://ja.wikipedia.org/wiki/Xeon
https://gigazine.net/news/20200623-japan-fugaku-fastest-supercomputer/

https://ja.wikipedia.org/wiki/Apple_M1

Binary

https://www.fujitsu.com/jp/about/businesspolicy/tech/fugaku/

LLVM-IR

Source

arm

x86

Frontend

used in Fugaku

m1, m2

Optimizing codes

Optimizing codes

LLVM

See: https://en.wikipedia.org/wiki/LLVM and related pages

Frontend

https://en.wikipedia.org/wiki/LLVM

19

Parallelization with A64FX/Fugaku
Julia is ready on Fugaku(?)

Fig. 2. Comparison of latency (top panel) and throughput (bottom panel)
of inter-node point-to-point MPI communication between using MPI.jl in
Julia and IMB benchmarks in C (results provided by R-CCS in [18]). Fugaku
scheduler setup: -L "node=2" -mpi "max-proc-per-node=1".

MPI ranks across 384 nodes using the torus layout, to match the
scheduler configuration of the R-CCS benchmarks. MPI.jl
typically showed very small overhead for messages larger than
1-2 KiB—peak throughput of ping-pong communication with
MPI.jl is within 1% of that reported by R-CCS—, but slightly
larger overhead for messages of smaller sizes. We note that,
contrary to IMB, at the present time MPIBenchmarks.jl
does not implement a cache-avoidance mechanism, which may
explain why MPI.jl appears to show better latency than IMB
for messages with size up to 64 KiB, which corresponds to
the size of the L1 cache of the A64FX CPU. We also observe
that, contrary to [16], we did not find a significant performance
drop for the Allreduce operation for larger message sizes.

B. Type flexibility and reduced-precision with Float16

Developing complex applications using Float16 is not
easy. On A64FX, even the occasional occurrence of subnormals
of Float16 (6 ·10�8 to 6 ·10�5) causes a heavy performance
penalty but a compiler-flag is set to flush them to zero instead9

The available normal range of Float16, 6 · 10�5 to 65, 504,

9https://github.com/JuliaLang/julia/issues/40151.

Fig. 3. Comparison of latency of collective MPI operations
between using MPI.jl in Julia and IMB benchmarks in C (results
provided by R-CCS in [18]): MPI Allreduce (top panel), MPI
Gatherv (middle panel), MPI Reduce (bottom panel). Fugaku
scheduler setup: -L "node=4x6x16:torus:strict-io" -L
"rscgrp=small-torus" -mpi proc=1536.

Fig. 2. Comparison of latency (top panel) and throughput (bottom panel)
of inter-node point-to-point MPI communication between using MPI.jl in
Julia and IMB benchmarks in C (results provided by R-CCS in [18]). Fugaku
scheduler setup: -L "node=2" -mpi "max-proc-per-node=1".

MPI ranks across 384 nodes using the torus layout, to match the
scheduler configuration of the R-CCS benchmarks. MPI.jl
typically showed very small overhead for messages larger than
1-2 KiB—peak throughput of ping-pong communication with
MPI.jl is within 1% of that reported by R-CCS—, but slightly
larger overhead for messages of smaller sizes. We note that,
contrary to IMB, at the present time MPIBenchmarks.jl
does not implement a cache-avoidance mechanism, which may
explain why MPI.jl appears to show better latency than IMB
for messages with size up to 64 KiB, which corresponds to
the size of the L1 cache of the A64FX CPU. We also observe
that, contrary to [16], we did not find a significant performance
drop for the Allreduce operation for larger message sizes.

B. Type flexibility and reduced-precision with Float16

Developing complex applications using Float16 is not
easy. On A64FX, even the occasional occurrence of subnormals
of Float16 (6 ·10�8 to 6 ·10�5) causes a heavy performance
penalty but a compiler-flag is set to flush them to zero instead9

The available normal range of Float16, 6 · 10�5 to 65, 504,

9https://github.com/JuliaLang/julia/issues/40151.

Fig. 3. Comparison of latency of collective MPI operations
between using MPI.jl in Julia and IMB benchmarks in C (results
provided by R-CCS in [18]): MPI Allreduce (top panel), MPI
Gatherv (middle panel), MPI Reduce (bottom panel). Fugaku
scheduler setup: -L "node=4x6x16:torus:strict-io" -L
"rscgrp=small-torus" -mpi proc=1536.

M. Giordano, arXiv:2207.12762v1 [cs.DC] 26 Jul 2022

 has similar scaling of MPI with C

(no obvious overhead)

Tests of MPI + on Fugaku

Send-Recv performance

20

Open source LQCD code in Julia Language

Akio Tomiya

Functions: SU(Nc)-heatbath, (R)HMC, Self-learning HMC, SU(Nc) Stout 
 Dynamical Staggered, Dynamical Wilson, Dynamical Domain-wall

 Measurements

Start LQCD

 in 5 min

Lattice QCD code
AT & Y. Nagai in prep

1. Download Julia binary

2. Add the package through Julia package manager

3. Execute!

https://github.com/akio-tomiya/LatticeQCD.jl

Machines: Laptop/desktop/Jupyter/Supercomputers

Open source (Julia Official package, Now updated to v1.0)

https://github.com/akio-tomiya/LatticeQCD.jl

CLIME_jllWilsonloop.jl

Gaugefields.jl

LatticeDiracOperators.jl

QCDMeasurements.jl

21

Package structure
Our lattice QCD codes are constructed by following repositories

Akio Tomiya

Dependency (Automatically solved)

Symbolic operations of Wilson/Polyakov loops

ILDG I/O Gauge fields (+HMC/Heatbath), MPI 
PC/Supercomputers

Fermions (+HMC), Wilson, KS, DW, MPI 
PC/Supercomputers

Wrapper for LatticeDiracOperators.jl &

Gaugefields.jl, QCDMeasurements.jl

- Wizard for parameter files

- HMC/RHMC for SU(Nc)

 - Stout + Wilson/Staggered/DW

- Heatbath for SU(Nc)

- Measurements

- Jupyter, Colab/PC/Supercomputers

etc

See https://github.com/akio-tomiya/LatticeQCD.jl in detail

Measurements in LQCD

(Correlator, Flow, Qtop, etc)

https://github.com/akio-tomiya/LatticeQCD.jl

22

procs 1 2 4 16 32 64 1 2 4 16 32 64# procs

It looks scaling well

AT & Y. Nagai in prep

Akio Tomiya

Wilson inversion / MPI parallel, Strong Scaling

Akio Tomiya

22

Benchmark of Julia + QCD

Absolute execution time Relative speed up

LatticeDiracOperators.jl LatticeDiracOperators.jl

Tested on Yukawa-21@YITP

We need more contributors! 
Please help us

AT & Y. Nagai in prep

We thank to H. Ohno & Issaku Kanamori

23

Trivializing map realized using neural network

Akio TomiyaFlow based sampling algorithm

arxiv 1904.12072, 2003.06413, 2008.05456

Normalizing flow? = Trivializing map, exact MCMC with ML

ϕ = F(NN)[φ]
Change of variable by a neural network (Normalizing flow)

Sampling from Gaussian

→ Inverse trivializing map (neural net)

→ QFT configurations → Tractable Jacobian (by even-odd strategy)

→ After sampling, Metropolis-Hastings test → exact!

Related talk: Nobuyuki Matsumoto (Feb 16)

24

A public code in Julia Language

Akio TomiyaNormalizing flow in Julia

https://github.com/AtelierArith/GomalizingFlow.jl

A public Julia code for the flow-based  
sampling algorithm for scalar field.

This supports not only 2d but also 3d.

CPU/GPU with Docker.

https://arxiv.org/abs/2208.08903

I reported in NeurIPS 2022 workshop

https://ml4physicalsciences.github.io/2022/

A new type of convolution
improves acceptance rate
(~ shorten the autocorrelation)

http://www.apple.com
https://ml4physicalsciences.github.io/2022/

25

Summary
LQCD + Machine learning by Julia language

Akio Tomiya

25

• Machine learning for LQCD

• Neural net (NN) + expert knowledge -> Best performance 
e.g. AlphaFold2, NN wave functions

• NN can deal with 4d non-abelian gauge symmetric data now

• Self-learning HMC with NN works for dynamical fermions

• Julia language for LQCD/HPC/ML

• Julia has similar speed with C (w/ & w/o MPI), and machine learning friendly

• Two Julia codes for lattice field theory

• LatticeQCD.jl: A suite lattice QCD code, machine learning

• GomalizingFlow.jl: Trivializing map via a neural network

arXiv: 2208.08903
arXiv: 2103.11965

KAKENHI: 20K14479, 22H05112, 22H05111, 22K03539 Thanks!

26

MPI benchmark Akio Tomiya

272727
https://jopss.jaea.go.jp/pdfdata/JAERI-Data-Code-2001-010.pdf

PingPong

Fig. 2. Comparison of latency (top panel) and throughput (bottom panel)
of inter-node point-to-point MPI communication between using MPI.jl in
Julia and IMB benchmarks in C (results provided by R-CCS in [18]). Fugaku
scheduler setup: -L "node=2" -mpi "max-proc-per-node=1".

MPI ranks across 384 nodes using the torus layout, to match the
scheduler configuration of the R-CCS benchmarks. MPI.jl
typically showed very small overhead for messages larger than
1-2 KiB—peak throughput of ping-pong communication with
MPI.jl is within 1% of that reported by R-CCS—, but slightly
larger overhead for messages of smaller sizes. We note that,
contrary to IMB, at the present time MPIBenchmarks.jl
does not implement a cache-avoidance mechanism, which may
explain why MPI.jl appears to show better latency than IMB
for messages with size up to 64 KiB, which corresponds to
the size of the L1 cache of the A64FX CPU. We also observe
that, contrary to [16], we did not find a significant performance
drop for the Allreduce operation for larger message sizes.

B. Type flexibility and reduced-precision with Float16

Developing complex applications using Float16 is not
easy. On A64FX, even the occasional occurrence of subnormals
of Float16 (6 ·10�8 to 6 ·10�5) causes a heavy performance
penalty but a compiler-flag is set to flush them to zero instead9

The available normal range of Float16, 6 · 10�5 to 65, 504,

9https://github.com/JuliaLang/julia/issues/40151.

Fig. 3. Comparison of latency of collective MPI operations
between using MPI.jl in Julia and IMB benchmarks in C (results
provided by R-CCS in [18]): MPI Allreduce (top panel), MPI
Gatherv (middle panel), MPI Reduce (bottom panel). Fugaku
scheduler setup: -L "node=4x6x16:torus:strict-io" -L
"rscgrp=small-torus" -mpi proc=1536.

Fig. 2. Comparison of latency (top panel) and throughput (bottom panel)
of inter-node point-to-point MPI communication between using MPI.jl in
Julia and IMB benchmarks in C (results provided by R-CCS in [18]). Fugaku
scheduler setup: -L "node=2" -mpi "max-proc-per-node=1".

MPI ranks across 384 nodes using the torus layout, to match the
scheduler configuration of the R-CCS benchmarks. MPI.jl
typically showed very small overhead for messages larger than
1-2 KiB—peak throughput of ping-pong communication with
MPI.jl is within 1% of that reported by R-CCS—, but slightly
larger overhead for messages of smaller sizes. We note that,
contrary to IMB, at the present time MPIBenchmarks.jl
does not implement a cache-avoidance mechanism, which may
explain why MPI.jl appears to show better latency than IMB
for messages with size up to 64 KiB, which corresponds to
the size of the L1 cache of the A64FX CPU. We also observe
that, contrary to [16], we did not find a significant performance
drop for the Allreduce operation for larger message sizes.

B. Type flexibility and reduced-precision with Float16

Developing complex applications using Float16 is not
easy. On A64FX, even the occasional occurrence of subnormals
of Float16 (6 ·10�8 to 6 ·10�5) causes a heavy performance
penalty but a compiler-flag is set to flush them to zero instead9

The available normal range of Float16, 6 · 10�5 to 65, 504,

9https://github.com/JuliaLang/julia/issues/40151.

Fig. 3. Comparison of latency of collective MPI operations
between using MPI.jl in Julia and IMB benchmarks in C (results
provided by R-CCS in [18]): MPI Allreduce (top panel), MPI
Gatherv (middle panel), MPI Reduce (bottom panel). Fugaku
scheduler setup: -L "node=4x6x16:torus:strict-io" -L
"rscgrp=small-torus" -mpi proc=1536.

M. Giordano, arXiv:2207.12762v1 [cs.DC] 26 Jul 2022

This section describes the performance of PingPong as a one-
to-one communication. PingPong sends data between two
ranks by Send communication from one rank, receives the data
at the other rank, and then sends the data back to the original
rank by Recv communication.

Allreduce collects data from all ranks, performs a set
operation, and transfers the result to and transfers
the result to all ranks.

Akio Tomiya

28

Introduction
Configuration generation with machine learning is developing
Year Group ML Dim. Theory Gauge sym Exact? Fermion? Reference
2017 AT, Akinori

Tanaka
RBM  

+ HMC
2d Scalar - No No arXiv: 1712.03893

2018 K. Zhou+ GAN 2d Scalar - No No arXiv: 1810.12879

2018 J. Pawlowski + GAN

+HMC

2d Scalar - Yes? No arXiv: 1811.03533

2019 MIT+ Flow 2d Scalar - Yes No arXiv: 1904.12072

2020 MIT+ Flow 2d U(1) Equivariant Yes No arXiv: 2003.06413

2020 MIT+ Flow 2d SU(N) Equivariant Yes No arXiv: 2008.05456

2020 AT, Akinori
Tanaka + SLMC 4d SU(N) Invariant Yes Partially arXiv: 2010.11900

2021 M. Medvidovic´+ A-NICE 2d Scalar - No No arXiv: 2012.01442

2021 S. Foreman L2HMC 2d U(1) Yes Yes No
2021 AT+ SLHMC 4d QCD Covariant Yes YES! This talk
2021 L. Del

Debbio+ Flow 2d Scalar, O(N) - Yes No
2021 MIT+ Flow 2d Yukawa - Yes Yes
2021 S. Foreman,

AT+
Flowed 
HMC

2d U(1) Equivariant Yes No but compatible arXiv: 2112.01586

2021 XY Jing Neural
net

2d U(1) Equivariant Yes No
2022 J. Finkenrath Flow 2d U(1)
 Equivariant Yes Yes (diagonalization) arxiv: 2201.02216

2022 MIT+ Flow 2d, 4d U(1), QCD Equivariant Yes Yes arXiv:2202.11712 +

2022 AT+ Flow 2d, 3d Scalar Yrs
＋…

29

Benchmark
Code comparison

Akio Tomiya

29

using Random

function main()

T = 10

K = 10^4

N = 12

#

A = zeros(ComplexF64, (N,N))

V = zeros(ComplexF64, N)

W = zeros(ComplexF64, N)

function myprod(A,V,W)

 for k = 1:N

 for i = 1:N

 W[i] += A[i, k]*V[k]

 end

 end

end

function test(A,V,W)

 for jj=1:T

 runtimes=[]

 for r=1:K

 A .= rand(N,N) + im*rand(N,N)

 V .= rand(N) + im*rand(N)

 W .= 0

 tmp = @elapsed myprod(A,V,W)

 push!(runtimes,tmp)

 end

 println("$(jj-1) $(sum(runtimes)) #W[1] = $(W[1])")

 end

end

test(A,V,W)

end

if abspath(PROGRAM_FILE) == @__FILE__

 main()

end

#include <stdio.h>

#include <complex.h>

#include <math.h>

#include <time.h>

#include <stdlib.h>

#define T 10

#define K 10000

#define N 12

double urand(){

 double m, a;

 m = RAND_MAX + 1;

 a = (rand() + 0.5)/m;

 a = (rand() + a)/m;

 return (rand() + a)/m;

}

void myprod(double complex A[N][N], double complex *V, double complex *W) {

 for (int k = 0; k < N; k++) {

 for (int i = 0; i < N; i++) {

 W[i] += V[k] * A[k][i];

 }

 }

}

void test(double complex A[N][N], double complex *V, double complex *W) {

 for (int jj = 0; jj < T; jj++) {

 double runtimes = 0;

 for (int r = 0; r < K; r++) {

 for (int i = 0; i < N; i++) {

 for (int j = 0; j < N; j++) {

 A[i][j] = urand() + urand() * I;

 }

 V[i] = urand() + urand() * I;

 W[i] = 0.0 + 0.0 * I;

 }

 clock_t start = clock();

 myprod(A, V, W);

 clock_t end = clock();

 runtimes += (double)(end - start) / CLOCKS_PER_SEC;

 }

 printf("%d %f # W[0] = %f %f\n", jj, runtimes, creal(W[0]), cimag(W[0]));

 }

}

int main() {

 double complex A[N][N];

 double complex V[N];

 double complex W[N];

 test(A, V, W);

 return 0;

}

