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Introduction



Take-home messages

• We reformulate the problem of constructing a (multigrid) preconditioner in the
language of gauge-equivariant neural networks.

• We find that such networks can learn the general paradigms of multigrid and
significantly reduce the iteration count of the outer solver.

• Transfer learning: If we change the configuration or parameters like κ and β , only
very little or no extra training is needed.

• We can implement communication avoidance naturally.

• We provide a flexible implementation interface (GPT) for experimentation and
further studies.
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https://github.com/lehner/gpt


Preconditioning

• In lattice QCD, wall-clock time is typically dominated by solution of Dirac equation

Du= b

Usually done by an iterative solver (here, FGMRES)

• Time to solution is determined by condition number of Dirac matrix
• Condition number increases dramatically in physical quark-mass and continuum limit

• Way out: Preconditioning
• Find a preconditioner M such that M ≈ D−1

• Define v = M−1u and use

DM M−1u= (DM)v = b

to solve for v with preconditioned matrix DM (smaller condition number)
• Then u= M v
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Low and high modes

• Consider the eigendecomposition of D

D =
∑

n

λn|n〉〈n|

→ Preconditioner should approximate low-mode and high-mode components of D−1

• State-of-the-art algorithms (multigrid) are
designed to do this

• We follow this paradigm, but here we
learn the preconditioner

Source: https://summerofhpc.prace-ri.eu/multithreading-the-multigrid-solver-for-lattice-qcd
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https://summerofhpc.prace-ri.eu/multithreading-the-multigrid-solver-for-lattice-qcd


Related work
Related work falls into three categories

1. Neural networks for multigrid (but not for gauge theories), e.g.,
• Katrutsa, Daulbaev, Oseledets arXiv:1711.03825 [math.NA]
• He & Xu arXiv:1901.10415 [cs.CV]
• Greenfeld, Galun, Basri, Yavneh, Kimmel arXiv:1902.10248 [cs.LG]
• Eliasof, Ephrath, Ruthotto, Treister arXiv:2011.09128 [cs.CV]
• Huang, Li, Xi arXiv:2102.12071 [math.NA]

2. Gauge-equivariant neural networks (but not for solving Dirac equation), e.g.,
• Cohen, Weiler, Kicanaoglu, Welling arXiv:1902.04615 [cs.LG]
• Finzi, Stanton, Izmailov, Wilson arXiv:2002.12880 [stat.ML]
• Luo, Carleo, Clark, Stokes arXiv:2012.05232 [cond-mat.str-el]
• Kanwar et al. arXiv:2003.06413 [hep-lat]
• Boyda et al. arXiv:2008.05456 [hep-lat]
• Favoni, Ipp, Müller, Schuh arXiv:2012.12901 [hep-lat]
• Abbott et al. arXiv:2207.08945 [hep-lat]

5/35

https://arxiv.org/pdf/1711.03825
https://arxiv.org/pdf/1901.10415
https://arxiv.org/pdf/1902.10248
https://arxiv.org/pdf/2011.09128
https://arxiv.org/pdf/2102.12071
https://arxiv.org/pdf/1902.04615
https://arxiv.org/pdf/2002.12880
https://arxiv.org/pdf/2012.05232
https://arxiv.org/pdf/2003.06413
https://arxiv.org/pdf/2008.05456
https://arxiv.org/pdf/2012.12901
https://arxiv.org/pdf/2207.08945


Related work

3. Multigrid algorithms in lattice QCD
• Brannick, Brower, Clark, Osborn, Rebbi arXiv:0707.4018 [hep-lat]
• R. Babich et al. arXiv:1005.3043 [hep-lat]
• Frommer et al. arXiv:1303.1377 [hep-lat]
• Brannick et al. arXiv:1410.7170 [hep-lat]
• Brower, Clark, Strelchenko, Weinberg arXiv:1801.07823 [hep-lat]
• Brower, Clark, Howarth, Weinberg arXiv:2004.07732 [hep-lat]
• Boyle & Yamaguchi arXiv:2103.05034 [hep-lat]
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Gauge-equivariant layers



Parallel transport
• Consider a field φ(x) with x ∈ S (space-time lattice, dim = d) and φ ∈ VI = VG ⊗ VḠ

(gauge space: VG = CN , non-gauge space: VḠ = CN̄ )

• Also consider an SU(N) gauge field Uµ(x) acting on VG

• Define the parallel-transport operator for a path p = p1, . . . , pnp
with pi ∈ {±1, . . . ,±d}

Tp = Hpnp
· · ·Hp2

Hp1
with Hµφ(x) = U†

µ(x − µ̂)φ(x − µ̂)

• Hµ transports information by a single hop in direction µ̂

• Hµ acts on field; new field Hµφ is evaluated at x

• Example: Tp = H−1H−2H−1H2H2
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Gauge equivariance

• A gauge transformation by Ω(x) ∈ SU(N) acts in the usual way
φ(x)→ Ω(x)φ(x)

Uµ(x)→ Ω(x)Uµ(x)Ω†(x + µ̂)

• Such gauge transformations commute with Tp for any path p

Tpφ(x)→ Ω(x)Tpφ(x)

• This is an example of gauge equivariance:

An object (here: φ) and the transformed object (here: Tpφ)
transform in the same way under a gauge transformation.
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Parallel-transport convolutions
• Parallel-transport convolution layer and local parallel-transport convolution layer

ψa(x)
PTC
=
∑

b

∑
p∈P

W bp
a Tpφb(x) ψa(x)

LPTC
=
∑

b

∑
p∈P

W bp
a (x)Tpφb(x)

• a = output feature index
• b = input feature index
• P = set of paths
• W bp

a acts in VḠ (here: 4× 4 spin matrix)
• Elements of W : “layer weights”

• Layers are gauge-equivariant

• No activation function since we want
to learn a linear preconditioner

(L)PTC
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Restriction and prolongation layers

• On the coarse grid S̃ we have fields φ̃(y) with y ∈ S̃ and φ̃ ∈ ṼI

• ṼI has no gauge degrees of freedom→ no gauge transformations on ṼI

• Restriction and prolongation layer (with B = block map from S̃ to S)

ψ̃(y)
RL
=
∑

x∈B(y)

W (y, x)φ(x)
ψ(x)

PL
=W (y, x)†φ̃(y)

RL
PL

10/35



Graphical conventions for features and layers

• A feature is represented by a plane
• A layer sits between planes and is represented by paths plus a dashed arrow
• For restriction/prolongation, a layer is represented by a square frustum

(L)PTC
RL
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Parallel and identity layers

• Parallel layers act on the same input feature in parallel
• Identity layer (dashed arrow w/o paths): simple copy operation, i.e., output = input
• Example: (All layers except L1 are identity layers)

L1

L2
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Communication avoidance

• On machines with many nodes, subvolumes are assigned to different MPI processes

• We also consider models where no information is communicated between
subvolumes (by setting the links Uµ(x) connecting subvolumes to zero)

• We find that the performance of these models (in terms of iteration count gain) is
close to those with communication
→ Overall wall-clock time could be lower since no time is spent on communication

13/35



Wilson-clover Dirac operator



Dirac operator

• The Wilson Dirac operator can be written in terms of single hops:

DW =
1
2

4∑
µ=1

γµ(H−µ − H+µ)− 1
2

4∑
µ=1

(H−µ + H+µ − 2) +m

• For Wilson-clover, consider closed paths with four hops and define

Qµν = H−µH−νH+µH+ν + H−νH+µH+νH−µ + H+νH−µH−νH+µ + H+µH+νH−µH−ν

Then

DWC = DW − csw

4

4∑
µ,ν=1

σµνFµν

with

Fµν =
1
8
(Qµν −Qνµ) σµν =

1
2
(γµγν − γνγµ)
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Numerical details and eigenvalue spectrum

• V = 83 × 16, β = 6.0 (pure gauge), cSW = 1, periodic boundary conditions for all fields
• m= −0.6 is chosen so that DWC is tuned to near criticality (i.e., real part of smallest
eigenvalue ≈ 0)→ solution of Du= b is challenging problem
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High-mode preconditioners



Model setup and training strategy

• High-mode part of Dirac spectrum is related to short-distance behavior
→ Expect one or two layers with small number of hops to show gain in iteration count

• Consider a linear model M mapping a vector x to M x

• Supervised learning approach with training step as follows:
• Pick random vector v from Gaussian distribution (mean zero, standard deviation 1)
• Compute training tuple (DWCv, v) and optimize cost function

C = |M DWCv − v|2
→ Model learns to map DWCv to v (and hence M ≈ D−1

WC)
• Optimizer is Adam Kingma & Ba, arXiv:1412.6980 [cs.LG]
• Derivatives w.r.t. model weights computed using backpropagation

• Training data set is unbounded in size→ No need to add a regulator

• Cost function is dominated by high modes
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Models chosen for high-mode preconditioner

• One layer, one hop (i.e., 9 paths)

T0 = 1 , T1 = H1 , T2 = H2 , T3 = H3 , T4 = H4 , T5 = H−1 , T6 = H−2 , T7 = H−3 , T8 = H−4

• One layer, two hops: extend the above by 56 two-hop paths

HaHb with a, b ∈ {−4,−3,−2,−1,1,2, 3,4} (a ̸= −b)

• “Deep” network of two one-hop layers:
• 1→ 1→ 1: Two successive layers with one hop each
• 1→ 2→ 1: Two output features in first layer, two input features in second layer

• PTC (layer weights constant) and LPTC (layer weights depend on x)

• Communication avoidance: Uµ(x)≡ 0 between subvolumes of size 43 × 8
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Measure of performance

Iteration count gain= Iteration count without preconditioner
Iteration count with preconditioner

• Iteration count refers to outer solver (here, FGMRES)
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Results for high-mode preconditioner (one layer, one hop)
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LPTC, 1 layer, 1 hop, comm. avoid.

PTC, 1 layer, 1 hop, comm. avoid.

• No gain from LPTC (and they require more training)
• Communication-avoiding version only slightly worse (could be amortized)
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Results for high-mode preconditioner (deep network or multiple hops)
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PTC, 1 layer, 2 hops

• 1→ 2→ 1 model performs best (and gives ∼ twice the gain of 1 layer/1 hop model)
• Since layers are linear, deep models are not more expressive than shallow models
with same number of hops (but easier to train b/o smaller number of weights)
→ 2-hop model should reach similar performance with improved training procedure
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Transfer learning
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PTC, 1 layer, 1 hop, different conf.

PTC, 1 layer, 1 hop, β = 5.9

PTC, 1 layer, 1 hop, m = −0.55

• No retraining required for (i) different configuration from same ensemble,
(ii) configuration with different β , (iii) different mass

• m= −0.55 is not tuned to criticality→ Easier initial problem→ Smaller gain
• Performance varies slightly between configurations
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Low-mode preconditioners



Possible approaches

• Low-mode part of Dirac spectrum is related to long-distance behavior
→ Need deep network of (L)PTC layers to propagate information over long distances

• Alternative: Use multigrid paradigm
• Define coarse version of the lattice
• Define restriction and prolongation operations (= layers)
• Preserve low-mode part of Dirac spectrum Lüscher arXiv:0706.2298 [hep-lat]
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Model setup
• Reminder: coarse lattice = S̃, internal vector space = ṼI with s = dim(ṼI )

• Find s vectors in the near-null space of D

Dui ≈ 0 (i = 1, . . . , s)

• Apply FGMRES for D with source vector = 0 and random initial guess (solve to 10−8)
• This removes high-mode components and leaves linear combination of low modes

• Block the ui

• One site y ∈ S̃ corresponds to a set of sites (or block) B(y) ∈ S
• Blocked vector uy

i lives on the sites of B(y)

• Orthonormalize the uy
i within each block→ ūy

i

• Then the prolongation map (see slide 10) is defined by

W (y, x)† =
s∑

i=1

ūy
i (x)ê

†
i

with x ∈ B(y) and êi the canonical unit vectors of ṼI
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Training strategy

• Coarse-grid operator is defined as

D̃ = RDWCP

with R and P defined according to restriction and prolongation layers (slide 10)

• Coarse-grid model M̃ contains single LPTC layer with zero- and one-hop paths and
gauge fields replaced by 1 (layer is denoted by cLPTC)

• Same training strategy as before, with cost function

C = |M̃ D̃v − v|2

(this avoids costly inversion of D̃−1)
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Results for low-mode preconditioner (cLPTC layer)
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• Iteration count gain refers to inversion of D̃ (we use S̃ = 23 × 4 and s = 12)
• Longer training period compared to high-mode preconditioner
• Transfer learning works with moderate retraining
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Multi-grid preconditioners



Model setup

• Combine the high- and low-mode models to learn a model M that approximates the
short- and long-distance features of D−1

• First create a short-distance model that accepts a second input feature (initial guess)
• Model plays role of smoother in multigrid paradigm
• Initial guess from long-distance model acting on coarse grid
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Smoother model setup and training strategy
• Find a sequence of uk that approximately solve Du= b (exact solution for k→∞)

• Assume we have a high-mode model Mh that approximates D−1

• Smoother maps the tuple (uk, b) to uk+1

uk+1 = (1−MhD)uk +Mh b

= uk +Mh(b− Duk) (∗)
(“ iterative relaxation approach” or “defect correction” with defect b− Du)

• Both D and high-mode model Mh can be represented by (L)PTC layers→ Train a model Ms to map (uk, b) to a uk+r (with r ∈ N+)
• Model must have two input features and one output feature
• Every iteration of (∗) corresponds to two (L)PTC layers
→ Construct Ms using 2r successive layers (here with up to one hop each)

• We use r = 2 since it performed better than r = 1 in full multigrid model

• Cost function (with random vectors uk, b)

C = |Ms(uk, b)− uk+r |2
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Smoother model
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Results for smoother
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LPTC, 4 layers (2→ 2→ 2→ 1), 1 hop

• Iteration count gain from using Ms as preconditioner for Du= b with initial guess zero
• Performance is ∼ twice that of Mh with 1 layer/1 hop (since r = 2)
• Trained PTC model is used as initial weights for LPTC model (but no benefit from LPTC)
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Combined two-level multigrid model

• Duplicate the input feature and preserve one copy for smoother
• Restrict other copy to coarse grid and apply our coarse-grid model
• Prolongate result to fine grid
• Combine copy of initial feature and result of coarse-grid model to two input features
for smoother (= last four layers)
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Combined two-level multigrid model

• Allows for efficient transport of information over both short and long-distances
• Additional multigrid levels: Recursively replace coarse-grid layer by entire model
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Training strategy for multigrid model

• In principle, model should work well with layer weights from individual models

• Performance can be further improved by continued training with cost function

C = |M bh − uh|2 + |M bℓ − uℓ|2 (∗)
• bh = DWCv1, uh = v1, bℓ = v2, uℓ = D−1

WCv2

• v1 and v2 are random vectors with |bh|= |bℓ|= 1

• Focus on high- or low modes could be shifted by relative prefactor in (∗)
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Results for full multigrid model
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• Performance greatly improved over individual high-/low-mode models
• Continued training converges very quickly
• Transfer learning works again after brief retraining
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Summary and outlook



Take-home messages

• We reformulate the problem of constructing a (multigrid) preconditioner in the
language of gauge-equivariant neural networks.

• We find that such networks can learn the general paradigms of multigrid and
significantly reduce the iteration count of the outer solver.

• Transfer learning: If we change the configuration or parameters like κ and β , only
very little or no extra training is needed.

• We can implement communication avoidance naturally.

• We provide a flexible implementation interface (GPT) for experimentation and
further studies.
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Outlook

Many interesting directions for future work, e.g.,

• Learn the weights W of the restriction and prolongation layers directly
(without computing the near-null vectors)

• Investigate the space of possible models more comprehensively

• Perform benchmarks on large lattices and compare to state-of-the-art multigrid
(larger volumes should lead to larger iteration count gain)

• Apply our ideas to Dirac operators whose spectrum encircles the origin (e.g., DWF)

• Since no or very little retraining is needed between configurations:
Apply our ideas to gauge-field generation (HMC)
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