Precision computation of nucleon scalar and tensor couplings at the physical point

 Members: <u>Ryutaro Tsuji</u>,^{a,b} Ken-Ichi Ishikawa,^c Yasumichi Aoki,^b Yoshinobu Kuramashi,^d Shoichi Sasaki,^a Eigo Shintani,^d and Takeshi Yamazaki,^{d,e}(PACS Collaboration)
Affiliation: Tohoku University,^a RIKEN Center for Computational Science,^b Hiroshima University,^c University of Tsukuba Center for Computational Sciences,^d University of Tsukuba,^e

Introduction -Nucleon structure and New physics

In the standard model of modern particle physics, protons and neutrons (nucleons) have non-trivial structures governed by Quantum Chromodynamics (QCD). From the new physics Intensity Frontier Experiment Theoretical calculation (SM)

New Physics -

search aspects, highly precise determination by both experiment and theory is required to eliminate the ambiguities. We measured the renormalized transition matrix elements related to non-standard β decay interactions[1] using lattice QCD at the physical point for the high-precision calculation.

Summary

We evaluated the renormalized scalar and tensor couplings. Our results are enough precise to reveal **physics in Intensity frontier**. Further studies are proceeding towards **the continuum limit**.

References

- [1] V.Cirigliano et al., Prog. Part. Nucl. Phys. 71, 93-118 (2013).
- [2] R.Tsuji et al., Phys. Rev. D 106, 094505 (2022).
- [3] G. Martinelli et al, Nucl. Phys. B **445**, 81-108 (1995).
- [4] Y.Aoki et al., Phys. Rev. D 78, 054510 (2008).