
𝑚!"#
$ : example in Nf=3 case

• Checked: 𝑚! = −𝑚"#$
% indeed coincides with a zero of the chiral condensate

Lessons
• 𝑚"#$

% can be non-monotonic near (pseudo) critical point
• 𝑚& dependence may be rather strong even in symmetric “phase”

Recipe:
1. measure 𝑚′!"# for fixed 𝑁$; make sure high enough 𝑇
2. increase 𝑇 (decrease 𝑁$) to check stability
3. check stability against 𝑚%
4. → 𝑥𝑚!"# = lim

&→(
lim

)'→*)()*
+
𝑚!"#’

5. subtract 𝑐(𝑚% + 𝑥𝑚!"#)/𝑎+ from  Σ = −⟨𝜓𝜓⟩

𝑚!"# and 𝑚!"#′ for 𝑁$ = 2 + 1 (on LCP for 𝑇 > 0) 

• Remark: quark mass tuning of simulation points wrt 𝑚!"# yet to be done 
to ensure “Constant Physics”

Controlling residual chiral symmetry breaking effects of domain wall fermions in QCD thermodynamics
S. Aoki(1), Y. Aoki(2)†, H. Fukaya(3), S. Hashimoto(4)(5), I. Kanamori(2), T. Kaneko(4)(5)(6), Y. Nakamura(2), Y. Zhang(2)

(1) YITP, (2) RIKEN R-CCS, (3) Osaka-U, (4) KEK,  (5) Sokendai, (6) KMI 

Prelim. results of chiral condensate for 𝑚! = 0.1𝑚"
• After quark mass tuning of simulation points
• Assuming  𝑥 = 0 (because we only know 𝑥 < 0.03)
• Combining with quark mass tuning w or w/o reweighting

Abstract:
Investigation of QCD thermodynamics for 𝑁! = 2 + 1 along the lines of constant physics with Möbius domain wall fermions is
underway. At our coarsest lattice 𝑁" = 12, reweighting to overlap fermions is not successful. To use domain wall fermions with
the residual mass larger than average physical 𝑢𝑑 quarks, careful treatments of the residual chiral symmetry breaking are
necessary. One of the examples is the chiral condensate where a UV power divergence associated with the residual chiral
symmetry breaking emerges with a coefficient not known a priori. In this presentation we introduce first the setup of the
computations and then discuss methodologies to overcome potential problems towards the continuum limit in this setup.

†: presenter

Formulations and codes
for Nf=2+1 T>0  and related T=0 studies:

• Gauge formulation:  Tree-level Symanzik → ↓ stout smear
• Quark formulation:   Möbius domain wall fermion (scale factor 2 Shamir type) w/ Ls=12
• Line of constant physics: 𝒂 𝜷 , 𝒎𝒔 𝜷 obtained from fine T=0 data
• Numerical Method:  Rational Hybrid Monte Carlo (HMC),

Conjugate Gradient solver for HMC and measurements
• Codes:  Grid [2](HMC) tuned [6] for A64FX by Regensburg group [7],

BQCD [3], Hadrons [4], Bridge++[5]

based on and updated from Lattice 2022 talk by Y. Aoki [9]
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Summary
• 𝑚!"# effects need to be addressed for Σ = −⟨𝜓𝜓⟩
• Promising economic procedure: utilization of 𝑚′!"#
Outlook
• 𝑚!"#

$ (𝑁(, 𝑚)) needs better understanding
• will give answer as to whether we can/should refine the subtraction 

scheme of chiral condensate
• More data (eg. more T-points, 𝑁( = 8, on different LCP) will help

𝑚"#$
% 𝑁, = 4 ∼ 0.03 𝑚"#$

𝑚!"#
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𝑥 = 0.3
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𝑥 = 0Σ = −⟨𝜓𝜓⟩
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d1

volume � T[MeV] aml ams #conf(seperated by 10 traj)

24
3 ⇥ 12 ⇥ 12 4.0 120.75 -0.00217 0.06105 999

4.02 130.298 0.00051 0.05887 1197

4.04 139.957 0.00196 0.05600 1548

4.06 149.703 0.00276 0.05294 1737

4.08 159.519 0.00331 0.05004 1847

4.10 169.393 0.00347 0.04709 1778

4.11 174.351 0.00353 0.04572 1650

4.13 184.309 0.00357 0.04309 1580

4.15 194.328 0.00355 0.04065 1860

d2

36
3 ⇥ 12 ⇥ 12 4.02 130.298 0.00051 0.05887 1017

4.04 139.957 0.00196 0.05600 889

4.06 149.703 0.00276 0.05294 929

4.08 159.519 0.00331 0.05004 1219

4.10 169.393 0.00347 0.04709 1464

4.11 174.351 0.00353 0.04572 1525

4.13 184.309 0.00357 0.04309 1765

4.15 194.328 0.00355 0.04065 1928

d3

48
3 ⇥ 12 ⇥ 12 4.06 149.703 0.00276 0.05294 322

4.08 159.519 0.00331 0.05004 231

4.10 169.393 0.00347 0.04709 331

4.11 174.351 0.00353 0.04572 343

4.13 184.309 0.00357 0.04309 272

4.15 194.328 0.00355 0.04065 413

TABLE XXXV. Statistics for chiral condensate measurement for d1,d2 and d3

QCD

𝑥𝑚"#$ = lim
-→/

𝑚"#$
%

𝑥
−
1
𝑚
"#
$/
𝑎0

DWF

(Earlier expectation by following envelope)

𝑚"#$
% ∼ 0.3 𝑚"#$

𝒙 < 𝟎. 𝟎𝟑

• d1(𝑁$ = 12) - c1 (16) : cutoff diff
Ø Good continuum scaling

• d1, d2, d3: volume diff
Ø No significant volume dep. 

except d1 (R=2)
• For more details, see the 

poster by J. Goswami

origin of mass for subtraction ?

Light quark Σ = −⟨&&⟩
• Two step UV renormalization necessary (naively)
• Logarithmic divergence (multiplicative):  /"(01, 2 GeV)
• Power divergence (additive):                    ∝ %# 3$%

• Subtracted using ⟨--⟩ 6 6
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Before “step 4”

Light quark Σ = −⟨𝜓𝜓⟩
• Two step UV renormalization necessary (naively)

• Logarithmic divergence (multiplicative):  𝑍1(𝑀𝑆, 2 GeV)
• Power divergence (additive):                     ∝ 𝑚! 𝑎20

• Subtracted using ⟨𝑠𝑠⟩:                                𝜓𝜓 3 −
4!
4"

𝜓𝜓 $
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High T “phase” 𝑚!"#

Envelope ?
𝑥𝑚!"#~0.3𝑚!"#

• Σ|?@A~
B' CDB()*

E+ + Σ|FGH(. +⋯ S. Sharpe [8]

𝑚"#$ ≠ 𝑥𝑚"#$;   𝑥 = 𝑂(1) ≠ 1
“Since 𝑥 is not known, this term gives an uncontrolled error in the condensate.                  
It can be studied and reduced only by increasing 𝐿$ - a very expensive proposition.”      
– S. Sharpe.

• We propose another way to estimate 𝑥𝑚!"# using 𝑚′!"#
If chiral symmetry is restored → Σ|567,. = 0
−𝑥𝑚"#$ is a zero of Σ|9:; which is related with

𝑚′"#$ =
∑# ⟨>$% ? @(B)⟩
∑# @(? @(B)⟩

(↔ 𝑚,-.=
∑# ⟨1$% 3⃗,5 6(8)⟩
∑# ⟨6 3⃗,5 6(8)⟩

at large 𝑡)

𝑚% = −𝑚!"#′ is a zero of Σ|&'(
due to Axial WT identity: (𝑚!+𝑚"#$

% )∑? 𝑃(𝑥 𝑃(0)⟩ = Σ|9:;

From: Δ" 𝐴" 𝑥 𝑃 0 = 2𝑚# 𝑃 𝑥 𝑃 0 + 2 𝐽$% 𝑥 𝑃 0 − 2 Σ 𝛿&,(
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!!"#$ : example in Nf=3 case &′'(! =
∑* ⟨-+, . /(")⟩
∑* /(. /(")⟩

WTI: (&&+&'(!3 )∑. 2(G 2(0)⟩ = Σ
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3 flavor QCD results

�0.02

0

0.02

0.04

0.06

0.08

0.1

0 10 20 30 40 50 60

h ̄ i
MS(µ = 2GeV)[GeV3]

(ml +mres)R [MeV]

Ns = 24, Nt = 12,T ' 131MeV
Ns = 24, Nt = 8,T ' 196MeV
Ns = 16, Nt = 8,T ' 196MeV

FIG. 2. represented the chiral condensate in physical GeV3 units at a scale µ = 2GeV, in the MS scheme.
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Figure 5: Same as Fig. 4 but jMS
disc (2 GeV) and ⌫4 (k̄k) are measured on 243

⇥ 12 lattices.

To estimate ⌫4(k̄k) in an unbiased way, we choose multiple stochastic noise vectors and use the
chiral condensate which comes from the di�erent stochastic noise vectors to calculate the powers
of chiral condensate [11]. The value of ⌫4(k̄k) can be used to distinguish the order of phase
transition. In the thermodynamic limit, ⌫4(k̄k) = 1 corresponds to a first-order phase transition,
⌫4(k̄k) = 3 to an analytic crossover, and ⌫4(k̄k) = 1.604 to the second order phase transition with
3-dimensional Z(2) universality class. However, at finite volume, the result of ⌫4(k̄k) has volume
dependence for the first-order phase transition and crossover. It will approach the corresponding
universal value in the infinite volume limit, while the value of ⌫4(k̄k) does not change at a second-
order transition point for di�erent lattices i.e., it is scale invariant. Our goal is to determine the
order of phase transition for the transition point at a fixed temperature.

We show the result of ⌫4(k̄k) calculated on 243
⇥ 8 and 163

⇥ 8 lattices at V = 4.0 for di�erent
quark masses in the right panel of Fig. 4. Here we only focus on the transition point at this fixed
temperature which is determined from the peak location of jdisc shown in the left plot of Fig. 4 and
marked by a black rectangle. It seems that ⌫4(k̄k) approaches 3 as you increase the volume to the
thermodynamic limit. This is expected for a crossover transition at <MS

@ (2 GeV) ⇠ 44 MeV. This
is consistent with what we have found from the volume independence of hk̄ki and jdisc as shown
in the right plot of Fig. 2 and left plot of Fig. 4.

In the right plot of Fig. 5, we show a similar plot as the right plot of Fig. 4 but for 243
⇥ 12

lattices. The black rectangle marks the result of ⌫4(k̄k) at the pseudo critical or critical quark mass
for temperature 121 MeV. It’s close to 3. It seems to be a crossover, but another larger lattice for
#g = 12 would be important to confirm this.

4. Summary and Outlook

We have shown the first study of # 5 = 3 QCD phase transition in the chiral regime using chiral
fermion formulation, Möbius domain wall fermions. We have evaluated the chiral condensate,
disconnected chiral susceptibility, and Binder cumulant for fixed temperature 121 MeV with lattices
243

⇥ 12 and 181 MeV with lattices 163
⇥ 8 and 243

⇥ 8, respectively. For each lattice, we have a
variety of quark masses. We have also examined zero temperature chiral condensate which is used
to remove the additive divergence for the finite temperature chiral condensate.

7

is likely

assuming 𝑚$ = −𝑚!"# is the origin assuming 𝑚$ = 0 is the origin 
𝑚%
& ∝ 𝑚$ −𝑚!"# + ℎ. 𝑜.


