Controlling residual chiral symmetry breaking effects of domain wall fermions in QCD thermodynamics

S. Aoki ${ }^{(1)}$, Y. Aoki ${ }^{(2) \dagger}$, H. Fukaya ${ }^{(3)}$, S. Hashimoto ${ }^{(4)(5)}$, I. Kanamori ${ }^{(2)}$, T. Kaneko ${ }^{(4)(5)(6), ~ Y . ~ N a k a m u r a ~}{ }^{(2)}$, Y. Zhang ${ }^{(2)}$
${ }^{(1)}$ YITP, ${ }^{(2)}$ RIKEN R-CCS, ${ }^{(3)}$ Osaka-U, ${ }^{(4)}$ KEK, ${ }^{(5)}$ Sokendai, ${ }^{(6)}$ KMI
based on and updatad from Laticice 2022 takk by Y. Aoki 99

Abstract:

Investigation of QCD thermodynamics for $N_{f}=2+1$ along the lines of constant physics with Möbius domain wall fermions is underway. At our coarsest lattice $N_{t}=12$, reweighting to overlap fermions is not successful. To use domain wall fermions with the residual mass larger than average physical ud quarks, careful treatments of the residual chiral symmetry breaking are necessary. One of the examples is the chiral condensate where a UV power divergence associated with the residual chiral symmetry breaking emerges with a coefficient not known a priori. In this presentation we introduce first the setup of the computations and then discuss methodologies to overcome potential problems towards the continuum limit in this setup.

Gauge formulation: Tree-level Symanzik $\rightarrow \downarrow$ stout smear
Quark formulation: Möbius domain wall fermion (scale factor 2 Shamir type) w/ $\mathrm{L}_{\mathrm{s}}=12$ Line of constant physics: $\boldsymbol{a}(\boldsymbol{\beta}), \boldsymbol{m}_{s}(\boldsymbol{\beta})$ obtained from fine $T=0$ data
Numerical Method: Rational Hybrid Monte Carlo (HMC),
Conjugate Gradient solver for HMC and measurements
BQCD [3], Hadrons [4], Bridge++ 5 [5]

- $\left.\Sigma\right|_{D W F} \sim \frac{m_{f}+x m_{\text {res }}}{a^{2}}+\left.\Sigma\right|_{\text {cont. }}+\cdots$ S. Sharpe [8]
$m_{\text {res }} \neq x m_{\text {res }} ; \quad x=O(1) \neq 1$
"Since x is not known, this term gives an uncontrolled error in the condensate. It can be studied and reduced only by increasing L_{s} - a very expensive proposition." -s. Sharpe.
- We propose another way to estimate $x m_{\text {res }}$ using m^{\prime} res

If chiral symmetry is restored $\left.\rightarrow \Sigma\right|_{\text {cont. }}=0$
$-x m_{\text {res }}$ is a zero of $\left.\Sigma\right|_{D W F}$ which is related with

$m_{f}=-m_{\text {res }}$ is a zero of $\left.\Sigma\right|_{D W F}$
due to Axial WT identity: $\left(m_{f}+m_{r e s}^{\prime}\right) \Sigma_{x}\langle P(x) P(0)\rangle=\left.\Sigma\right|_{D W F}$
From: $\Delta_{\mu}\left\langle A_{\mu}(x) P(0)\right\rangle=2 m_{f}\langle P(x) P(0)\rangle+2\left\langle J_{5 q}(x) P(0)\right\rangle-2 \Sigma \delta_{x, 0}$

Recipe:

1. measure ${ }^{\prime}{ }^{\prime}$ res for fixed N_{t}; make sure high enough T
2. increase T (decrease N_{t}) to check stability
3. \quad check stability against m_{f}
4. \quad check stability against m_{f}
5. $\quad \rightarrow x m_{\text {res }}=\lim \quad \lim$
6. $\quad \rightarrow x m_{\text {res }}=\lim _{T \rightarrow \infty} \lim _{m_{f} \rightarrow-m_{r e s}^{\prime}} m_{r e s}^{\prime}$
7. subtract $c\left(m_{f}^{T \rightarrow \infty}+x m_{\text {res }}\right) / a^{2}$ from $\Sigma=-\langle\bar{\psi} \psi\rangle$
$m_{\text {res }}$ and $m_{\text {res }}{ }^{\prime}$ for $N_{f}=2+1$ (on LCP for $T>0$)

$m_{\text {res }}^{\prime} \sim 0.3{ }^{\beta} \sim 0 . m_{\text {res }}$
(Earlier expectation by following envelope)
$\Sigma=-\langle\bar{\psi} \psi\rangle$

$$
x=0.3
$$

"Forget about $m_{\text {res }} "$
is dumber for $\Sigma_{\text {, }}$, but...

$m_{\text {res }}^{\prime}\left(N_{t}^{4.1}=4\right) \sim_{0}^{\beta} \sim_{0.03} m_{\text {res }}^{4.3}$ $x<0.03$ is likely $x=0$

Remark: quark mass tuning of simulation points wrt $m_{\text {res }}^{\mathrm{T} \mathrm{M} \mathrm{MeV]}}$ yet to be done
to ensure "Constant Physics" to ensure "Constant Physics"

Lessons

- $m_{\text {res }}^{\prime}$ can be non-monotonic near (pseudo) critical point
- m_{f} dependence may be rather strong even in symmetric "phase"

Prelim. results of chiral condensate for $m_{l}=0.1 m_{s}$

- After quark mass tuning of simulation points
- Assuming $x=0 \quad$ (because we only know $x<0.03$) Combining with quark mass tuning wor w/o reweighting

- d1 $\left(N_{t}=12\right)-\mathrm{c} 1(16):$ cutoff diff $>$ Good continuum scaling
- d1, d2, d3: volume diff
> No significant volume dep. except d1 ($\mathrm{R}=2$)
- For more details, see the poster by J. Goswami

Summary

- $\quad m_{r e s}$ effects need to be addressed for $\Sigma=-\langle\bar{\psi} \psi\rangle$

Promising economic procedure: utilization of m^{\prime} res

Outlook

- $\quad m_{r e s}^{\prime}\left(N_{t}, m_{f}\right)$ needs better understanding
will give answer as to whether we can/should refine the subtraction scheme of chiral condensate
More data (eg. more T-points, $N_{t}=8$, on different LCP) will help

1. MEXT Program for Promoting Researches on the Supercomputer Fugaku
(Simulation for basic science: from fundamental laws of particles to creation of nuclei): JPMXP1020200105, hp200130.
2. Grid: https://github.com/paboyle/Grid
3. BQCD: https://www.rrz.uni-hamburg.de/services/hpc/bqcd.html
4. Hadrons: https://github.com/aportelli/Hadrons
5. Bridge++: https://bridge.kek.jp/Lattice-code/
6. Grid configured with --enable-simd=A64FX --enable-gen-simd_width=64

18 (2019) 316.
8. S. Sharpe arXiv: 0706.0218, "Future of Chiral Extrapolations with Domain Wall
9. Y. Aoki et al (JLQCD), talk at Lattice 2022, "Thermodynamics with Möbius domain wall fermions near physical point I

