APPLICATION OF MASS REWEIGHTING IN (2+1)-FLAVOR QCD WITH MÖBIUS DWF J. Goswami¹, S. Aoki², Y. Aoki¹, H. Fukaya³, S. Hashimoto^{4,5}, I. Kanamori¹, Takashi Kaneko^{4,5,6}, Y. Nakamura¹, and Y. Zhang¹

> ¹Riken RCCS, ²YITP, ³Osaka U., ⁴KEK, ⁵SOKENDAI, ⁶Nagoya U. KMI (JLQCD collaboration)

Bigger picture

• Study of chiral phase transition with chiral fermions in (2+1)-flavor QCD thermodynamics. Pisarski-Wilczek : The chiral transition ($N_f = 2 + 1$) belongs to the O(4) universality class if the $U_A(1)$ symmetry is still broken at Tc, which is estimated to be between 130-135 MeV. However, if the $U_A(1)$ symmetry is restored at Tc, there is a possibility of a first-order transition $(O(2) \times O(4))$ in the chiral limit. [1]

• Möbius Domain Wall fermions (MDWF) : Exact chiral symmetry ($SU(2)_L \times SU(2)_R$) and chiral anomaly on finite lattice spacing at $L_s \rightarrow \infty$ in 4-d for vanishing quark masses.

(2)

(3)

(4)

(5)

• "Almost" chiral fermions for finite L_s .[2, 3] [See Poster by Y. Aoki]

Reweighitng factor calculation

Lattice Parameters and m_{res} effect

The partition function of Lattice QCD can be written as,

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}U\mathcal{O} \, det M(m_l) [det M(m_s)]^{1/2} \exp\left[-\beta S_g[U]\right] \quad .$$
 (1)

Reweighting of an observable for $m_{l1} \rightarrow m_{l2}$,

$$\langle \mathcal{O} \rangle_2 = \frac{1}{Z_2} \int DU \mathcal{O} det M(m_{l_2}) [det M(m_s)]^{1/2} \exp[-S_g] = \frac{Z_1}{Z_2} \frac{1}{Z_1} \int DU \left[O \frac{det M(m_{l_2})}{det M(m_{l_1})} \right] det M(m_{l_1}) [det M(m_s)]^{1/2} \exp[-\beta S_g]$$

Hence, the reweighting factor from $m_{l_1} \rightarrow m_{l_2}$ and the observable for new m_{l_2} ,

$$\omega = \left[\frac{det M(m_{l_2})}{det M(m_{l_1})}\right] \quad , \ \langle \mathcal{O} \rangle_2 = \frac{\sum_n \omega_i \mathcal{O}_n}{\sum_n \omega_n}$$

Detail of the calculation

The 4-dimensional DW operator is written as,

$$D_4^{Ls} = \frac{1+m}{2} + \frac{1-m}{2} \gamma_5 sgn_{tanh}^{(Ls)}(H_K)$$

The sign function can be parametrize as,

$$\begin{split} sgn_{tanh}^{(Ls)} &= \tanh(L_s \tanh^{-1}(x)) \\ sgn_{polar}^{(Ls)} &= \frac{(1 + \tanh x)^L s - (1 - \tanh x)^L s}{(1 + \tanh x)^L s + (1 - \tanh x)^L s} \end{split}$$

• Lattice size : $N_{\sigma} \times N_{\tau} = 32^3 \times 16$ and $L_s = 12$. • $m_l = 0.1 m_s$, input quark mass tuning using the $m_l^{new} = m_l^{old} - m_{res}$. • Perform reweighting $m_l^{old} \rightarrow m_l^{new}$. Code Base : Bridge++ [4].

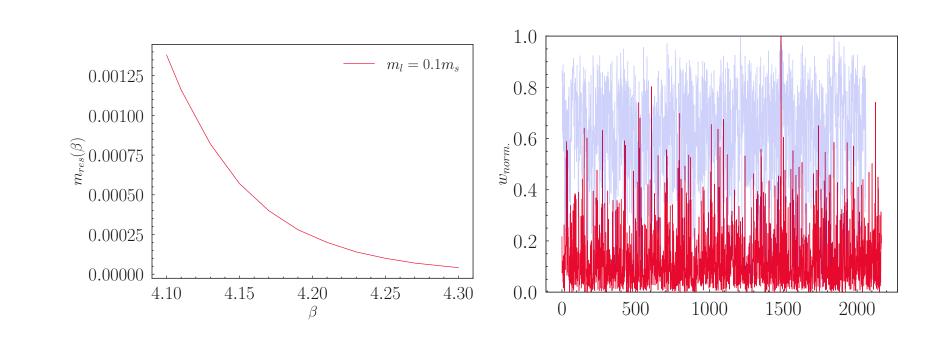


Fig. 1: m_{res} vs β (left) for $\beta \in \{4.10 : 4.30\}$ and fluctuation of reweighting factor for

 $\beta = 4.10$ and 4.17(right).

- reweighting factor fluctuate more for larger m_{res} .
- This method seems to fail when m_{res} corrections are more than 20% of the m_1^{old} within the current statistics.
- Statistics uncertainity of the reweighted quantity ?? $\langle \omega^2 \mathcal{O}^2 \rangle \langle \mathcal{O} \omega \rangle^2$.
- Errors depend on the fluctuation of the reweighting factor and also with its correlation with the observable [5].

• For ex. $\beta = 4.13$, $m_l = m_s/10$, $m_s = 0.043913$. $m_l^{old} = 0.0043913$, $m_l^{new} = 0.00357$ reweighting successful!!

• Limitation : For ex. $\beta = 4.13$, $m_l = m_s/27$, $m_s = 0.04309$. $m_l^{old} = 0.0016$, $m_l^{new} = 0.00078$ would fail in current statistics.

Where, H_K can be written as,

 $H_K = \frac{(b+c)\gamma_5 D_W(-M_0)}{2+(b-c)D_W(-M_0)}, \text{ Where}, D_W, \text{ is the Wilson Dirac Operator}$ (6)

we employ normalize complex Gaussian noise vectors $[\xi^{\dagger}, \xi]$ to estimate the reweighting factor,

$$\omega = \frac{\det D_4^{L_s}(m_1)}{\det D_4^{L_s}(m_2)} \tag{7}$$

$$\int D\xi^{\dagger} D\xi \, \exp[-\xi^{\dagger} A\xi]$$

$$\omega = det A^{-1} = \frac{\int D\xi^{\dagger} D\xi \, \exp[-\xi^{\dagger} A\xi]}{\int D\xi^{\dagger} D\xi\xi^{\dagger}\xi]}, \ A = M(m_{l_2})^{-1} M(m_{l_1})$$
(8)

Summary

- We discuss the application of light quark mass reweighting in Lattice QCD simulations with Möbius Domain Wall fermions to take care of the m_{res} effect on the observable.
- Our demonstration reveals that as the value of the m_{res} increases, the reweighting factor begins to fluctuate more. The efficacy of reweighting with limited statistics depends on this point.

Reweighting of chiral condensate

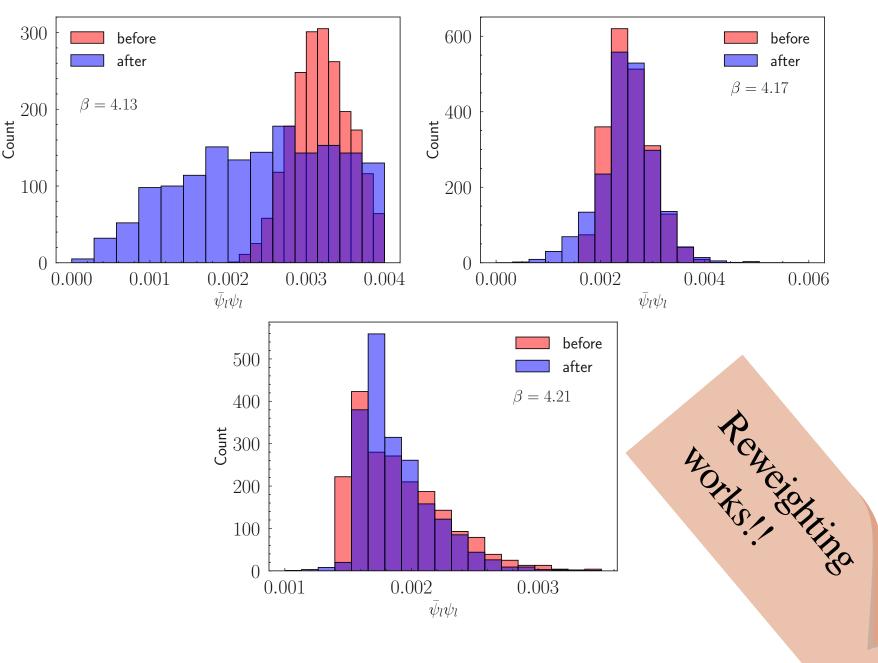
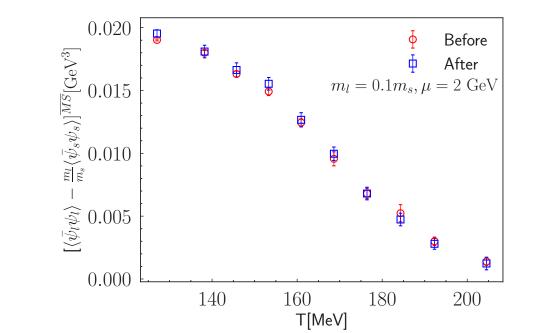


Fig. 2: Histogram of light quark chiral condensate for three β values



We use reweighting on the gauge ensembles generated by the JLQCD collaboration for 9 β values ranges from $\beta \in [4.10 : 4.30]$ with corresponding $m_l \in [0.00484742 : 0.00270836]$ and $m_{res} \in [0.00138 : 0.000041]$ [2, 3]. To make reweighting effective, we require a significant overlap between the observables being considered. We show the light quark chiral condensate for three β values here.

• Perform measurements of $\langle \psi_l \psi_l \rangle$ after adjusting the valence quark mass by taking care of the m_{res} effect. Then perform reweighting on $\langle \psi_l \psi_l \rangle$. • Subtracted chiral condensate $\langle \bar{\psi}_l \psi_l \rangle - \frac{m_l}{m_s} \langle \bar{\psi}_s \psi_s \rangle$] before and after reweighting.

• If the reweighting factor shows excessive fluctuations, a larger sample size is necessary to achieve an effective reweighting. Hence, for smaller light quark masses this will likely to be fail.

References

- ¹R. D. Pisarski and F. Wilczek, "Remarks on the chiral phase transition in chromodynamics", Phys. Rev. D 29, 338–341 (1984).
- ²I. Kanamori et al., "Thermodynamics with Möbius domain wall fermions near physical point (II)", LATTICE2022, 176 (2023).
- ³Y. Aoki et al., "Thermodynamics with Möbius domain wall fermions near physical point (I)", LATTICE2022.
- ⁴T. Aoyama, I. Kanamori, K. Kanaya, H. Matsufuru, and Y. Namekawa, "Bridge++ 2.0: Benchmark results on supercomputer Fugaku", PoS LATTICE2022, 284 (2023).
- ⁵A. Hasenfratz, R. Hoffmann, and S. Schaefer, "Reweighting towards the chiral limit", Phys. Rev. D 78, 014515 (2008).

Fig. 3: Subtracted chiral condensate before and after reweighting.

Acknowldgements

- Computer resource: supercomputer Fugaku (hp220174).
- MEXT as "Program for Promoting Researches on the Supercomputer Fugaku" (Simulation for basic science: from fundamental laws of particles to creation of nuclei, JPMXP1020200105) and JICFuS. • I. K is supported through JPS KAKENHI(JP20K03961).

