
  Fig. 2, 3 show the typical behaviors of       where  is scaled 
by     defined to be               . Noise/Signal ratio of        is 
also expressed as the grayed region. These figures implies 
that         saturates at some flow time.
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  The similarity between the Yang-Mills gradient flow and the 
stout smearing was implied by M. Lüscher[1] and the 
rigorous proof of the equivalence was recently given by K. 
Sakai and S. Sasaki at the zero limit of the lattice spacing      
and the smearing parameter     [2].  
  However, it is not obvious that they remain equivalent even 
with finite parameters within some numerical precision, 
therefore we verified the equivalence by comparing the 
energy density        measured in numerical simulations.⟨E⟩

 One can demonstrate the proof of the equivalence between 
the two methods in the following three steps. Detailed 
definitions and proof are given in the reference [2]. 
1. Derive a continuous version of the stout smearing 
procedure given below (note that             is taken here):

∂
∂s

ln Uμ(x, s) = iQμ(x, s) .

2. Derive the explicit form of the link derivative of the 
Wilson gauge action       given below:

g2
0∂x,μSW(U) = − iQμ(x, s) .

3. Prove the relation given below:
∂Uμ(x, s)

∂s
U−1

μ (x, s) =
∂
∂s

ln Uμ(x, s) +
1
2! [ln Uμ(x, s),

∂
∂s

ln Uμ(x, s)] + ⋯ .

SW

  Combining these equations, one can get the following 
equation and then find that it is reduced to the Yang-Mills 
Gradient flow equation in the limit of             .a → 0

∂Uμ(x, s)
∂s

U−1
μ (x, s) = − g2

0∂x,μSW(U) + O(a) .

a
ρ

ρ → 0

ρ

R(t)

X(t0) = 0.3t0 Xflow

t = ρn

   In Fig. 4, we see the behavior of      evaluated at    for 
every combinations of    and    . The dotted line corresponds 
to the grayed domain appearing in Fig. 2, 3. Then we 
conclude that the gradient flow can be replace by the stout 
smearing if the parameter   is satisfied with a certain 
condition given in summary.

t0
β ρ

U(n+1)
μ (x) = eiρQ(n)

μ (x)U(n)
μ (x) →

Summary
   In this study, we showed that the Yang-Mills gradient flow 
and the stout smearing remain equivalent within some 
numerical precision if we take the proper combination of 
the parameters. Especially, we verified that  for , 

 for , and  for  are enough 
small to identify the stout smearing with the Yang-Mills 
gradient flow.

ρ ≤ 0.1 β = 6.42

ρ ≤ 0.025 β = 5.96, 6,17 ρ ≤ 0.01 β = 5.76

X(t) ≡ t2⟨E(t)⟩
ρ =

R(t) ≡
Xstout(t) − Xflow(t)

Xflow(t)
.

Table 1.

a

Fig. 2. Fig. 3.

Fig. 4.

Fig. 1.

X(t)
t

X(t)

R(t)

  We also note that the computational speed of the stout 
smearing is about 10 times faster than that of the Yang-
Mills gradient flow. Therefore, we suggest that the stout 
smearing should be used as an alternative to the Yang-Mills 
gradient flow within the parameters we showed above.

R(t)

  Thus, the two methods are equivalent in the zero limit of 
two parameters. Remark that the flow time  and the 
number of smearing iterations  satisfy the relation            . 
  However, there must be a finite difference depending on      
and     in numerical simulations.

t

n

 In this study, we prepare four sets of gauge configurations 
as summarized in table 1. We perform the stout smearing 
with   0.1, 0.025, and 0.01 for each configuration to 
evaluate                     where    indicates the flow time. We 
also evaluate    with the Yang-Mills gradient flow. Fig. 1 
shows the typical behavior of      . To discuss the detail of 
the difference,  we calculate

ρ


