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Summary

Numerical results

In this study, we showed that the Yang-Mills gradient flow
and the stout smearing remain equivalent within some
numerical precision if we take the proper combination of
the parameters. Especially, we verified that p < 0.1 for g = 6.42,

p <0.025 for p=5.96,6,17, and p <0.01 for =576 are enough

small to identify the stout smearing with the Yang-Mills
gradient flow.

We also note that the computational speed of the stout
smearing is about 10 times faster than that of the Yang-
Mills gradient flow. Therefore, we suggest that the stout
smearing should be used as an alternative to the Yang-Mills
gradient flow within the parameters we showed above.

Introduction

The similarity between the Yang-Mills gradient flow and the
stout smearing was implied by M. Luscher[1] and the
rigorous proof of the equivalence was recently given by K.
Sakai and S. Sasaki at the zero limit of the lattice spacing «
and the smearing parameter p [2].

However, it is not obvious that they remain equivalent even
with finite parameters within some numerical precision,
therefore we verified the equivalence by comparing the
energy density (£) measured in numerical simulations.

Outline of the proof given in Ref.[2]

One can demonstrate the proof of the equivalence between
the two methods in the following three steps. Detailed
definitions and proof are given in the reference [2].

1. Derive a continuous version of the stout smearing
procedure given below (note that p — 0 is taken here):
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2. Derive the explicit form of the link derivative of the
Wilson gauge action Sy, given below:

850, ,Sw(U) = —iQ,(x,5).
3. Prove the relation given below:
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Combining these equations, one can get the following
equation and then find that it is reduced to the Yang-Mills
Gradient flow equation in the limitof a — 0.

oU (x, s) 2 )
o U, (x,5) = — 8,0, ,Sw(U) + O(a).
Thus, the two methods are equivalent in the zero limit of

two parameters. Remark that the flow time ¢+ and the

number of smearing iterations n satisfy the relation 7 = pn.

However, there must be a finite difference depending on a
and 2 in numerical simulations.

In this study, we prepare four sets of gauge configurations
as summarized in table 1. We perform the stout smearing
with p = 0.1, 0.025, and 0.01 for each configuration to
evaluate X(r) = t*(E(¢)) where ¢ indicates the flow time. We
also evaluate X(r) with the Yang-Mills gradient flow. Fig. 1
shows the typical behavior of X(¢). To discuss the detail of
the difference, we calculate
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Table 1. | — beta=6.17, tho=0.1(SS)
--- beta=6.17(GF)

/B L3xT ~ a/’f‘o Necont
5.76 16° x 32  0.297 100
5.96 243 x 48  0.200 100
6.17 323 x64 0.142 100 '
6.42 48%x96 0.100 100 A . . .

008 0.
Ur,’ Fig. 1.
Fig. 2, 3 show the typical behaviors of R(7) where ¢ is scaled
by 7, defined to be X(z,) = 0.3 . Noise/Signal ratio of Xj, is
also expressed as the grayed region. These figures implies
that R(¢r) saturates at some flow time.
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In Fig. 4, we see the behavior of R(r) evaluated at 7, for
every combinations of § and p . The dotted line corresponds
to the grayed domain appearing in Fig. 2, 3. Then we
conclude that the gradient flow can be replace by the stout
smearing if the parameter p
condition given in summary.

is satisfied with a certain
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