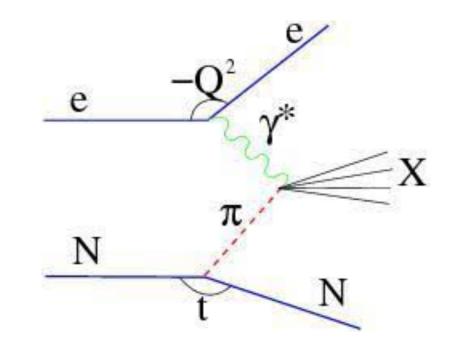
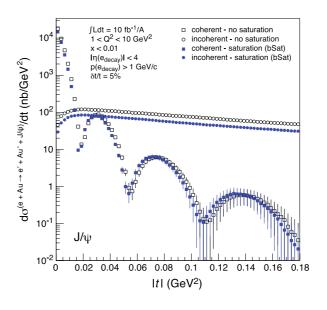
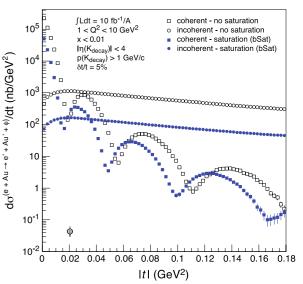
Taiwan's contribution and plans for the ZDC

Chia-Ming Kuo (NCU, Taiwan) on behalf of the EIC-Taiwan team

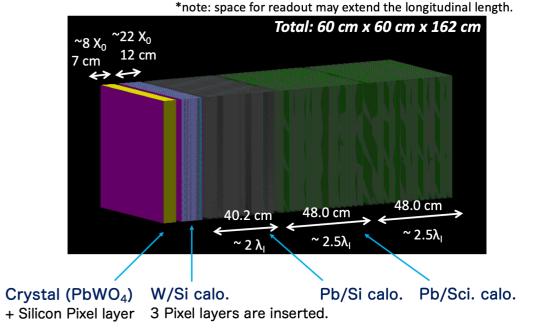

Physics motivation

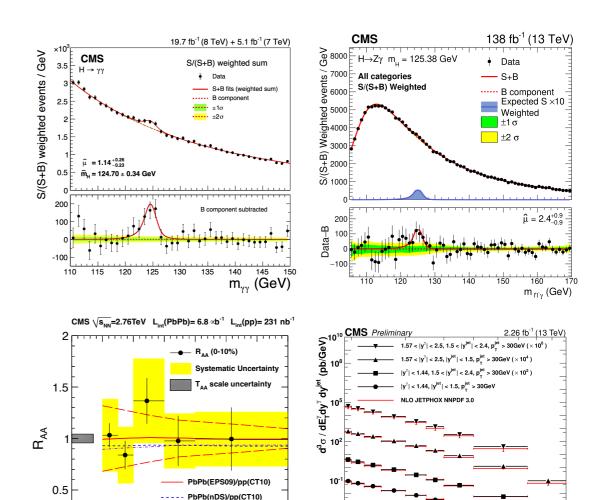

meson structure


- meson's PDFs, GPDs
- gluon energy in the meson
- meson form factors
- valence-quark distributions in the meson at large momentum fraction
- quark fragmentation into mesons

CGC

 exclusive vector meson production in e+A




Physics requirements for ZDC

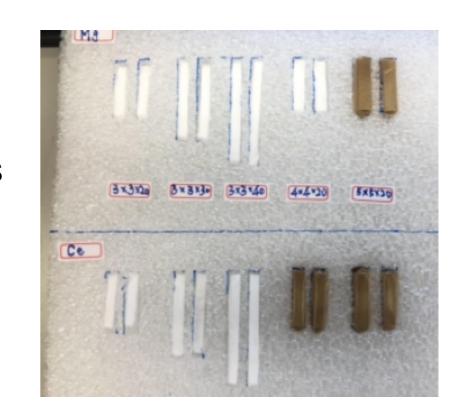
	Energy range	Energy	Position	Others		
Neutron	up to the beam energy	resolution $\frac{50\%}{\sqrt{E}} + 5\%$, ideally $\frac{35\%}{\sqrt{E}} + 2\%$	resolution $\frac{3\text{mrad}}{\sqrt{E}}$	Acceptance: 60 cm × 60 cm		
		Note: The acceptance is required from meson structure measurement.				
		Pion structure measurement may require a position resoultion of 1 mm.				
	0.1 - 1 GeV	20 - 30%		Efficiency: 90 – 99%		
		Note: Used as a veto in e+Pb exclusive J/ψ production				
Photon	20 – 40 GeV	$\frac{35\%}{\sqrt{E}}$	0.5–1 mm			
	Note: u-channel exclusive electromagnetic π^0 prochas a milder requirement of $\frac{45\%}{\sqrt{E}}+7\%$ and 2 spectively. Events will have two photons, but a photon tagging is also useful. Kaon structure measurement requires to tag a result.					
		and 2 or 3 photons, as decay products of Λ or Σ .				

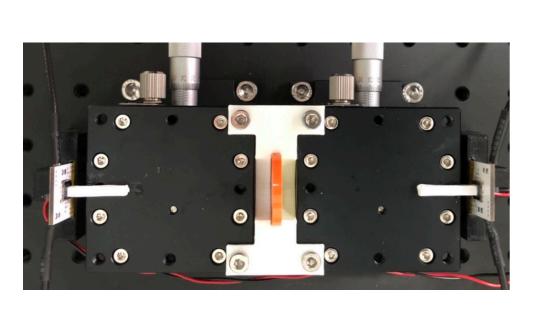
Our detector motivation

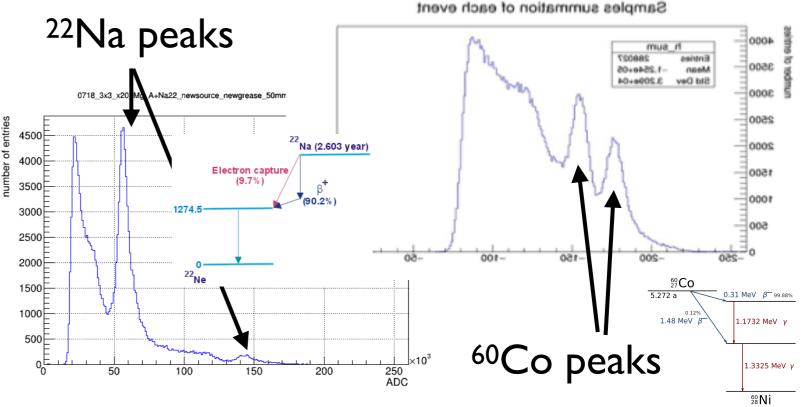
- Taiwan-CMS has been working on the CMS ECAL (PbWO₄), electromagnetic objects and photon related physics
- Taiwan Applied Crystal
 - one of qualified LYSO producers for CMS MTD
 - can deliver LYSO crystals with CMS standard wrap

Photon E₊ (GeV)

4×10² 5×10²


E_r (GeV)


PbWO₄ vs LYSO vs SciGlass


	X ₀	LY (ph/MeV)	T dep. of LY (%/K)	Decay time (ns)	λ _{em} nm
PbWO ₄ (CMS)	0.89 cm	200	-1.98	5 (73%) 14 (23%) 110 (4%)	420
LYSO	1.14 cm	30,000 (market standard)	-0.28	36	420
SciGlass	2.4-2.8 cm	>100		22-400	440-460

LYSO crystal characterization

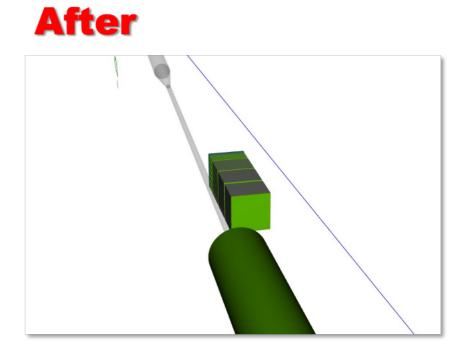
- NTU is setting up measurements for
 - absolute light yield of LYSO crystal using PMTs
 - time resolution of LYSO using SiPM
 - reach coincident time resolution of ~130ps

Readout (1/2)

 available readout board with Citiroc1A from wee roc for multichannel SiPM (Chih-Hsun Li, Academia Sinica) → can be used for first prototype study

- need a suitable readout for critical fluence value $(10^{14}/cm^2)$
 - CMS ECAL
 - barrel: APD, up to $4 \times 10^{13}/cm^2$
 - endcap: VPT (vacuum phototriodes), up to $7 \times 10^{15}/cm^2$
 - CMS MTD BTL (LYSO tiles with SiPM readout)
 - radiation (4/ab): $2 \times 10^{14} / cm^2$

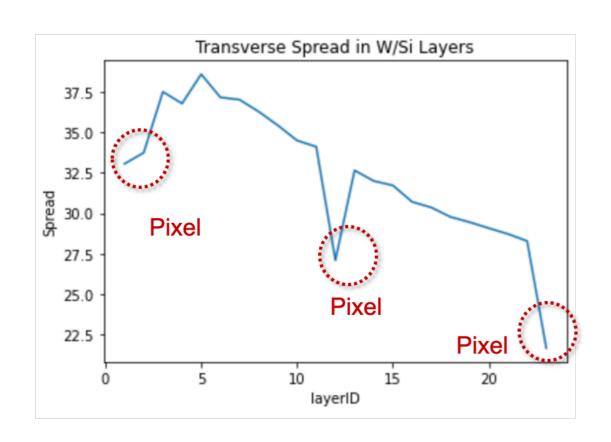


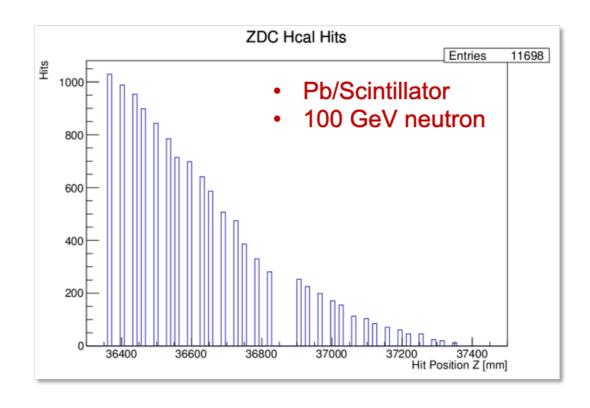

Readout (2/2)

- extensive studies of radiation damage, including temperature effects and annealing on SiPM were performed by CMS MTD
- HPK MPPC-HDR2-3015 used by CMS in R&D in 2019
- However, there are challenges
 - need to operate at -45°C to suppress the noise from increased dark count rate and avoid SiPM SPAD saturation
 - still high power consumption → specific packaging and mechanical support for heat extraction for stable operation

ZDC Monte Carlo implementation (1/2)

Po-Ju Lin





- Po-Ju Lin of Academia Sinica started to pick up simulation work from Shimizu-san
- A bug of alignment issued reported by other collaborators (issue #309) was fixed
- The ZDC complex rotation has been modified to have a consistency in codes between Athena and ECCE version. Merged to the EPIC GitHub already.

ZDC Monte Carlo implementation (2/2)

Po-Ju Lin

- discrepancy in energy deposit/spread between silicon pad and pixel layers was understood (issue #1020)
- further debugging on-going

Funding situation

- Prototype
 - funding situation will be clear in April
 - preliminary quote: 65 USD/cm³ for 10 crystals
- Final one assuming if LYSO meets our needs and is selected
 - a very good chance to be funded by the Taiwanese funding agencies if the overall cost is reasonable
 - a joint project between Taiwan Instrumentation and Detector Consortium (TIDC) and Taiwan Consortium of Emergent Crystalline Materials (TCECM)

Summary

- EIC-Taiwan proposes building a LYSO-based calorimeter prototype for ZDC
- Po-Ju Lin started to pick up the ZDC simulation work from Shimizu-san
- We will collaborate with colleagues from EIC-Japan and EIC-Korea at ZDC