

Satoshi Yano **Hiroshima University**

> **EIC Asian Workshop** 17/03/2023

TOF (AC-LGAD) study at Hiroshima

- Main identification detector at low- to middle-p_T region \bullet
 - Requiring an excellent timing resolution due to the compact design detector at $|\eta| < 1.4$ (Barrel) and $1.8 < |\eta| < -4.0$ (Endcap)

- Main identification detector at low- to middle-pt region \bullet
 - Requiring an excellent timing resolution due to the compact design detector at $|\eta| < 1.4$ (Barrel) and $1.8 < |\eta| < -4.0$ (Endcap)
- Requiring the timing resolution: 30 ps (25 ps) for Barrel (Endcap)
 - Particle identification $e/\pi/K/p$ separation 0.15 < p < 2 GeV/c (0.15

- Main identification detector at low- to middle-pt region
 - Requiring an excellent timing resolution due to the compact design detector at $|\eta| < 1.4$ (Barrel) and $1.8 < |\eta| < -4.0$ (Endcap)
- Requiring the timing resolution: 30 ps (25 ps) for Barrel (Endcap)
 - Particle identification $e/\pi/K/p$ separation 0.15 < p < 2 GeV/c (0.15
- Requiring the spatial resolution: 30 um (30 um) for Barrel (Endcap)
 - Improve tracking (momentum) resolution

- Main identification detector at low- to middle-pt region
 - Requiring an excellent timing resolution due to the compact design detector at $|\eta| < 1.4$ (Barrel) and $1.8 < |\eta| < -4.0$ (Endcap)
- Requiring the timing resolution: 30 ps (25 ps) for Barrel (Endcap)
 - Particle identification $e/\pi/K/p$ separation 0.15 < p < 2 GeV/c (0.15
- Requiring the spatial resolution: 30 um (30 um) for Barrel (Endcap)
 - Improve tracking (momentum) resolution

LGAD technology is the primary candidate to fulfill the requirements

Low Gain Avalanche Diode (LGAD)

- DC-LGAD (standard LGAD)
 - Being built by ATLAS and CMS (LHC Run 4)
 - 30 ps timing resolution
 - Non-negligible inactive area due to individual readout
 - Not good spatial resolution (Pad: 1.3x1.3 mm² for ATLAS/CMS)

<image>

eadout ² for ATLAS/CMS

K. Nakamura et al., JPS Conf. Proc. 34, 010016 (2021)

Low Gain Avalanche Diode (LGAD)

- DC-LGAD (standard LGAD)
 - Being built by ATLAS and CMS (LHC Run 4)
 - 30 ps timing resolution
 - Non-negligible inactive area due to individual readout
 - Not good spatial resolution (Pad: 1.3x1.3 mm² for ATLAS/CMS)
- AC-LGAD
 - Additional oxide layer for AC-coupling readout
 - 30 ps timing resolution
 - One large gain layer for electrodes \rightarrow 100% of fill factor
 - Good spatial resolution thanks to charge sharing

ATLAS

K. Nakamura et al. JPS Conf. Proc. 34, 010016 (2021)

Low Gain Avalanche Diode (LGAD)

- DC-LGAD (standard LGAD)
 - Being built by ATLAS and CMS (LHC Run 4)
 - 30 ps timing resolution
 - Non-negligible inactive area due to individual readout
 - Not good spatial resolution (Pad: 1.3x1.3 mm² for ATLAS/CMS)
- AC-LGAD
 - Additional oxide layer for AC-coupling readout
 - 30 ps timing resolution
 - One large gain layer for electrodes \rightarrow 100% of fill factor
 - Good spatial resolution thanks to charge sharing

K. Nakamura et al. JPS Conf. Proc. 34, 010016 (2021)

EIC-Japan has high hopes for AC-LGAD technology

Situation of AC-LGAD development

- Development of AC-LGAD for use in HL-LHC environment
 - <u>R. Heller et al., JINST 17 P05001, 2022</u>
 - Fabricated by BNL and KEK/Tsukuba (Hamamatsu Photonics : HPK)
 - Strip type and pad type (small sensor 3x3 mm²)

Strip type by BNL

Pad type by HPK

3x3 mm² 3x3 mm² Sensor size Sensor size R. Heller et al., JINST 17 P05001, 2022

Situation of AC-LGAD development

- Development of AC-LGAD for use in HL-LHC environment lacksquare
 - <u>R. Heller et al., JINST 17 P05001, 2022</u>
 - Fabricated by BNL and KEK/Tsukuba (Hamamatsu Photonics : HPK)
 - Strip type and pad type (small sensor 3x3 mm²)

Strip type by BNL

Pad type by HPK

3x3 mm² 3x3 mm² Sensor size Sensor size R. Heller et al., JINST 17 P05001, 2022

Jame	Pitch	Primary signal amp.	Position res.	Tin
Jnit	μm	mV	μm	
BNL 2020	100	101 ± 10	≤6	29
SNL 2021 Narrow	100	104 ± 10	≤9	32
SNL 2021 Medium	150	136 ± 13	≤11	30
BNL 2021 Wide	200	144 ± 14	≤9	33
IPK C–2	500	128 ± 12	22 ± 1	30
IPK B–2	500	95 ± 10	24 ± 1	2

ne res.

Situation of AC-LGAD development

- Development of AC-LGAD for use in HL-LHC environment lacksquare
 - <u>R. Heller et al., JINST 17 P05001, 2022</u>
 - Fabricated by BNL and KEK/Tsukuba (Hamamatsu Photonics : HPK)
 - Strip type and pad type (small sensor 3x3 mm²)

Strip type by BNL

Pad type by HPK

3x3 mm² 3x3 mm² Sensor size Sensor size R. Heller et al., JINST 17 P05001, 2022

Jame	Pitch	Primary signal amp.	Position res.	Time res.
Jnit	μm	mV	μm	ps
BNL 2020	100	101 ± 10	≤6	29 ± 1
SNL 2021 Narrow	100	104 ± 10	≤9	32 ± 1
SNL 2021 Medium	150	136 ± 13	≤11	30 ± 1
SNL 2021 Wide	200	144 ± 14	≤9	33 ± 1
IPK C–2	500	128 ± 12	22 ± 1	30 ± 1
IPK B–2	500	95 ± 10	24 ± 1	27 ± 1

~30 ps time and < 30 um spatial resolution

Development trend S. Kita et al., at VERTEX 2022 **Pixel-type**

- The latest development at <u>VERTEX2022</u> (for HL-LHC) lacksquare
 - Larger strip and smaller pixel sensors

1x1 mm²: Sensor size: 50, 100, 150, 200 um Electrode shape 40, 90, 140, 190 um

Strip-type

Sensor size: 3x10 mm² Electrode width: 40, 45 um

Development trend S. Kita et al., at VERTEX 2022 **Pixel-type**

- The latest development at <u>VERTEX2022</u> (for HL-LHC)
 - Larger strip and smaller pixel sensors
- Unexpected character in large strip sensor lacksquare
 - Smaller signal than pixel type
 - Due to inter-electrode capacitance

Signal size of pixel-type 100x100 um² Pixel-type sensor Signal: ~ 122 mV 0.1 0.15 0.2 0.25 0.3 Pulse Height [V]

1x1 mm²: Sensor size: 50, 100, 150, 200 um Electrode shape 40, 90, 140, 190 um

Strip-type

Sensor size: 3x10 mm² Electrode width: 40, 45 um

Inter electrode capacitance

Development trend S. Kita et al., at VERTEX 2022 **Pixel-type**

- The latest development at <u>VERTEX2022</u> (for HL-LHC)
 - Larger strip and smaller pixel sensors
- Unexpected character in large strip sensor lacksquare
 - Smaller signal than pixel type
 - Due to inter-electrode capacitance

Higher spatial resolution and more radiation tolerant for HL-LHC

1x1 mm²: Sensor size: 50, 100, 150, 200 um Electrode shape 40, 90, 140, 190 um

Strip-type

Sensor size: 3x10 mm² Electrode width: 40, 45 um

Inter electrode capacitance

- Maximize the timing resolution and stable readout
 - PID performance
- Realize larger size sensor with reasonable segmentation
 - Simplify construction & operation, and cost reduction
- le segmentation reduction

Strip-type

- Maximize the timing resolution and stable readout PID performance
- Realize larger size sensor with reasonable segmentation •
 - Simplify construction & operation, and cost reduction
- Optimize the material budget (Reference: 8% X₀) Tracking and EM performance, and cost reduction

Strip-type

Forward LHCal Forward EMCa Length [X0] 00 BECal DIRC Radiation 10-10-2 10-3

-4 -3 -2 -1 0 1 2 3

Pseudorapidity

Barrel HCal Dual RICH SC Magnet Active BCal Support Barrel AC-LGAD Inner det. spt./service Backward EMCa Backward AC-LGAD mRICH AeroGel Forward AC-LGAD Barrel muRwell Barrel silicon

4

ECCE Simulation

Material budget

Forward/backward silicon Au-coated beam chamber

- Maximize the timing resolution and stable readout PID performance
- Realize larger size sensor with reasonable segmentation •
 - Simplify construction & operation, and cost reduction
- Optimize the material budget (Reference: 8% X₀) • Tracking and EM performance, and cost reduction
- Radiation tolerance
 - $10^{10} n_{eq}/cm^2$ at top luminosity ~ $10^{34} cm^{-2}s^{-1}$ in EIC ($10^{15} r_{eq}/cm^2$) in HL-LHC)

Strip-type

Material budget

ECCE Simulatio Forward LHCa Forward EMCa Barrel HCal Dual RICH SC Magne Active BCal Support BECal DIRC Barrel AC-LGAD Backward EMCa Backward AC-LGAD mRICH AeroGe Forward AC-LGAD Barrel muRwel Barrel silicon

Forward/backward silicon Au-coated beam chamber

- Maximize the timing resolution and stable readout
 - **PID** performance
- Realize larger size sensor with reasonable segmentation
 - Simplify construction & operation, and cost reduction
- Optimize the material budget (Reference: 8% X₀) Tracking and EM performance, and cost reduction
- Radiation tolerance
 - $10^{10} n_{eq}/cm^2$ at top luminosity ~10³⁴ cm⁻²s⁻¹ in EIC (10^{15~16} n_{eq}/cm²) in HL-LHC)

Strip-type

Material budget

ECCE Simulatio Forward LHCa Forward EMCal Barrel HCal Dual RICH SC Magne Active BCal Suppor DIRC Backward AC-LGAD Forward AC-LGA Barrel muRwel Barrel silicon

Forward/backward silicor Au-coated beam chamber

Simulation study

- Detector response and data reconstruction lacksquare
 - ePIC detector (based on DD4Hep): https://github.com/eic/epic
 - ElCRecon: https://github.com/eic/ElCrecon
 - Pythia8 NC DIS Q2>1GeV2 in ep (18GeV electron + 275GeV proton beam) collisions (HepMC data archived in S3)
 - 10,000 events
- TOF detector in simulation \bullet
 - Sensor segment size of barrel-TOF: 100um x 1cm
 - Sensor segment size of endcap-TOF: 100um x 100um
 - Sensor thickness: 300um

The number of hits of TOF

- ullet
- 35% and 28% events without hits on Barrel and Endcap lacksquare
- The maximum hit per event: ~80 (Barrel) and ~30 (Endcap)

The number of hits per event: 5.2 (Barrel), 2.8 (Endcap disk1), and 3.0 (Endcap disk2)

Barrel TOF occupancy

100um x 1cm ($\phi \times \eta$)

$lcm \times lcm (\phi \times \eta)$

Segment 0.1×20mm² ($\Delta\eta \times \Delta\phi = 0.000157 \times 0.015728$)

100um x 2cm ($\phi \times \eta$)

$2 \text{cm} \times 2 \text{cm} (\phi \times \eta)$

Segment $20 \times 20 \text{mm}^2$ ($\Delta \eta \times \Delta \phi = 0.015728 \times 0.015728$)

- The maximum multiple-hit segment
 - 100um x 1cm (strip-type) : 3x10⁻⁴
 - 100um x 2cm (strip-type) : 3x10⁻⁴
 - lcm x lcm (pad-type) : 12x10-4
 - 20x10-4 – 2cm x 2cm (pad-type) :
- Negligible overlapping effect per event even with • O(1) cm size segment
- Not necessary the high granularity segment from lacksquarethe particle identification point of view
- Next step: effect on the tracking resolution ullet

Barrel-TOF Distance between hits

- Multiple hits on different chips by one charged particle
- Possibly improving tracking resolution by the effect?
- Starting point of the simulation study \cdots

harged particle y the effect?

Endcap TOF occupancy

Occupancy of Disk1

1mm x 1mm

lcm x lcm

Segment 1×1mm²@z=1915mm

1000 800 800 600 400 200 -200 -400 -600 -800 -1000-800 -600 -400 -200 0 200 400 600 800 1000

Occupancy of Disk1+ Disk2

- The maximum multiple-hit segment
- 100um x 100um (pad-type) : 9x10-4
- 1mm x 1mm (pad-type) : 2.5x10⁻³
- 1cm x 1cm (pad-type) : 1.7x10⁻²
- Higher occupancy at innermost (forward rapidity)
 - Option: use multiple type chip _____
- Unexpected inactive area
 - Due to technical issue

Very preliminary results Material budget effect on EMC

- A study on the material budget effect on EMC (downstream of TOF) lacksquare
- Inject single neutral pion

Enhance conversion due to interaction with the material

Test bench at Hiroshima

- Test of the AC-LGAD and EICROC (readout board for EIC) lacksquare
 - Work closely with HPK for effective development
- Equipment based on the suggestion from BNL/KEK/Tsukuba teams lacksquareFocusing on timing resolution and cross-talk (charge sharing) measurement
- FPGA, digitizer (flash ADC), oscilloscope, and PMT lacksquare
 - FPGA: ZC706
 - Oscilloscope: WaveRunner 8208HD (10GS/s, 8ch)
 - Digitizer: CAEN DT5742 (5GS/s, 16ch)
 - PMT: PHOTEK PMT240 (60 ps rising time)
 - Looking forward to receiving AC-LGAD and EICROC

- Experience to create the INTT detector in sPHENIX with (almost) only Japanese \bullet technology
- Same environments for R&D, mass production, and QA •

Capability of the team Japan

3

Staves

- Experience to create the INTT detector in sPHENIX with (almost) only Japanese technology
- Same environments for R&D, mass production, and QA + Hiroshima University with Si tracker development experience + SKCM² (WPI)

sPHENIX INTT Japan + Hiroshima Univ.

Capability of the team Japan

A.

ASUKA Co., Lt

TOF team

EIC-JAPAN

- Experience to create the INTT detector in sPHENIX with (almost) only Japanese technology
- Same environments for R&D, mass production, and QA + Hiroshima University with Si tracker development experience + SKCM² (WPI)

Capability of the team Japan

• TOF is the main detector for particle identification at low- to middle p_T region

Summary

Summary

- TOF is the main detector for particle identification at low- to middle p_T region •
- AC-LGAD is the primary candidate to fulfill the requirements of the ePIC detector •
 - High timing resolution, high granularity (if needed), and high fill factor _____

Summary

- TOF is the main detector for particle identification at low- to middle p_T region
- AC-LGAD is the primary candidate to fulfill the requirements of the ePIC detector
 High timing resolution, high granularity (if needed), and high fill factor
- AC-LGAD development elements suiting EIC are remaining, e.g. maximizing chip size, tuning segmentation and so on

14

Summary

- TOF is the main detector for particle identification at low- to middle p_T region
- AC-LGAD is the primary candidate to fulfill the requirements of the ePIC detector High timing resolution, high granularity (if needed), and high fill factor
- AC-LGAD development elements suiting EIC are remaining, e.g. maximizing chip size, tuning segmentation and so on
- Hiroshima University (EIC-Japan) will play a key role in the development of TOF
 - The simulation study for the fine-tuning of segmentation and material budget has been started
 - The R&D lab is being constructed at Hiroshima University
 - Establishing a strong cooperative relationship with Hamamatsu Photonics

14