

Development of MIP Timing Detector for the CMS Phase-2 Upgrade

CHANG-SEONG MOON

CENTRE FOR HIGH ENERGY PHYSICS (CHEP), KYUNGPOOK NATIONAL UNIVERSITY (KNU)

EIC Asia Workshop, Mar. 16 2023

MIP Timing Detector for CMS Phase-2 Upgrade

- Important to maintain detector performance during HL-LHC running
 - Time information will help to reduce pileup effects from approximately 200 simultaneous interactions
- MIP timing detector (MTD) consists of barrel timing layer (BTL) and endcap timing layer (ETL), providing 30-50 ps time resolution per track
 - BTL: LYSO crystal scintillator + SiPM readout
 - ETL: Silicon based sensor (LGAD) + ASIC readout

MTD Physics motivation: pile-up mitigation

- Important to maintain detector performance during HL-LHC running
 - Time information will help to reduce pileup effects from approximately 200 simultaneous interactions

The display of an event with a Higgs boson produced in the VBF process on top of 200 pile-up collisions.

MTD Physics motivation: pile-up mitigation

- The mitigation of pile up effect improves all physics objects
- 4D vertexing (position+time) can remove
 - Spurious pileup tracks from "isolation cone" around leptons
 - Rejects spurious jets formed from pileup particles.

MTD Physics motivation: particle ID

MTD can provide significant improvement for particle ID

• heavy ion charm tag.

□ Significant gains for searches for long-lived new particles.

4D vertex reconstruction of primary and secondary vertices

Provides a close kinematic for Long Lived Particles decaying within MTD

b-tagging performance with MTD

b-quark jets are important:

- Primary decay mode of the Higgs, via $H \rightarrow b \overline{b}$
- $^{\circ}$ Exclusive decay mode of the top quark, via $t{\rightarrow}Wb$
- Significant improvement with MTD for b-quark identification efficiency while reduced c-jet or light jets mistag rate.

EIC Asia Workshop

Mip Timing Detector (MTD) Project

CHANG-SEONG MOON (KNU)

Overview of endcap timing layer (ETL)

- Two layers of silicon sensors covering 1.6 < |η| < 3.0
- Sensors mounted in rows on each face of Al cooling disks
- Readout boards placed between sensor rows, staggered wrt opposite face for full sensor coverage.
- Two such disks to provide average of 1.8 hits per track.
- Mounted on neutron moderator upstream of the CE, in an independently cooled and accessible volume.

ETL structure

ETL z-profile

Element	Elements in Z	Thickness [mm]
1	Thermal screen	20
	Gap between thermal screen and front disc	1
2	Front face of electronics of the front DEE	8**
3	Front disc	7.5
4	Rear face of electronics of the front DEE	8
	Gap between front and back discs	1
5	Front face of electronics of the back DEE	8
6	Back disc	7.5
7	Rear face of electronics of the back DEE	8
	Gap between cables and back disc	1
8 + 9	Patch panels 0 + cables [9] + moderator [8] at the innermost section	21
10	Back support plate	5
	Gap between ETL back support plate and HgCal thermal screen	3***
	Total	99

* All gaps (1mm) are an additional clearance for disc deformation while transporting and rotating. More detailed study whether 1mm is sufficient are needed.

** Maximum thickness of the on-detector electronics should not exceed 8mm, services included.

*** It was simulated that a support structure of HgCal at cold operations shrinks by 2-3mm in Z while its thermal screen stays in the same position.

Components that still need prototyping to finalize the z-profile.

Detector layout Front layer

•	Short (3 modules) SHs	15
	Standard (6 modules) SHs	35
•	Large (7 modules) SHs	28

- Small SHs possibly to be placed as well at the inner radius in order to maximize the coverage
- · More detailed model of the power board is required in order to verify possible clashes with the detector mechanics

Detector layout Rear layer

- Short (3 modules) SHs
- Standard (6 modules) SHs 35
- Large (7 modules) SHs 27

16

 More detailed design of the service hybrid attachment to the discs shall be developed (amount and location of bolts/pins) to verify whether rows can be shifted up or down in order to maximize the coverage at the inner radius

MTD ETL module with LGAD and ETROC

R&D productions

1111

ETL sensors

Strong effort to combine inputs from studies into a complete detector design and layout: ~8000 modules (4 sensors each) on 2 endcaps

Each detector consists of 2 disks with front and back face instrumented

Modules + front end electronics and services need to fit in very tight mechanical envelope

ETL sensor module

ETL

CMS requirements for ETL

 \square BTL and ETL shall be maintained as close as possible to -30°C

- To control the noise or dark current rate and leakage currents.
- Occupancy less than a few percent, ensuring a large probability for single hits
 - detector must also produce a manageable data volume.
 - \circ < 0.1% low η , 1% highest η

Compatibility with CMS Trigger and Data Acquisition systems

Radiation tolerance

- $\circ~1.6\times10^{15}~n_{eq}/cm^2$ in the highest η (3.0) part of the endcap
- $1.5 \times 10^{14} n_{eq}/cm^2$ in the lowest η (1.6) part of the endcap

CHANG-SEONG MOON

ETL Module assembly

Fermilab, SiDet, Detector test Area

- □ LGAD+ASIC assemblies mounted on AIN (Aluminum Nitride) carrier plates
- □ Aerotech 3+1 axis gantries were used for ETL module assembly
- Labview program for the set-up and motion of gantry required for module assembly

CHANG-SEONG MOON (KNU)

Service hybrids

 Service hybrids providing control, readout, and power, are mounted between rows of modules.

CHANG-SEONG MOON (KNU)

Parameters for time resolution determination

Jitter in ASIC is measured from preamplifier and discriminator

Noise source

Time walk: the voltage value V_{th} is reached at different times by signals of different amplitude

Jitter: the noise is summed to the signal, causing amplitude variations

Due to the physics of signal formation

Endcap Timing Layer ReadOut Chip (ETROC)

ETROC Block Diagram

- □ Total ETROC size: 16 X 16 pixel cell
 - One pixel cell size: 1.3mm X 1.3mm to match the LGAD sensor pixel size
- □ Targeting signal charge (1MIP): ~6 fC
- TDC (time-to-digital converter) range
 - ~5 ns TOA (time of arrival)
 - ~10 ns TOT (time over threshold)

ETROC Development Plan

ETROCO

- Submitted in Dec. 2018
- Analog Front-end
- Tests by far confirmed functionality
- First round beam test early 2020

ETROC1

- Submitted in Aug. 2019
- 4 X 4 pixel array with full front-end including TDC
- Chips received middle Dec 2019
- TDC block works well
- Single pixel full chain testing on going, and followed by 4x4 array testing

- ETROC2
 - Aim to submit in Q1 2021
 - Designed to be compatible with 16 X 16 pixel array with
 - full functionalities
- ETROC3
 - Aim to submit in Q1 2022
 - Pre-production version

KNU group contributes on studies of the ETROCO/1 since June, 2019

CHANG-SEONG MOON (KNU)

Low Gain Avalanche Diode (LGAD) Sensors

Sensor producer

• HPK (Hamamatsu, Japan), FBK (Italy), CNM (Spain), NDL (China)

LGAD characteristics

- Precision position reconstruction and timing resolution
- Gain uniformity
- Highly improved radiation tolerance
- Large signals with low noise
- $\circ~$ Thin implanted gain layer of overall thickness of 35–50 μm
- □ The additional doping layer present at the n-p junction
 - Generates the high field necessary to achieve charge multiplication.

HPK 4x4 sensor array(1imes3 mm^2 pads)

FBK 2x8 sensor array($2 \times 2 \ mm^2$ pads)

EIC Asia Workshop

Charge Multiplication

- But devices with charge multiplication were already there:
 - Avalanche Photodiodes (APDs)
 - Photodiodes Gain=1
 - APD Gain=100-1000
 - Geiger mode (SPAD/SiPM) Gain~1E7

High field obtained by adding an extra doping layer

- E ~ 300 kV/cm, closed to breakdown voltage
- For HEP (particle detection, not photons)
- Keep charge information (linearity, not Geiger mode)
- But APDs are too noisy due to gain

Initial idea was APD with "low Gain" (~10-20) to compensate charge loss after irradiation

Silicon Detectors after Irradiation

- Irradiation degrades the signal of silicon detectors
- Recover it by increasing bias voltage
 - · Hit limit of PS or device breaks
- But while investigating thin devices (epitaxial) for the HL-LHC, Lange et al., found that highly irradiated samples, could achieve CCE>1 at high bias voltages (>1E5 V/cm)
 - Charge multiplication by impact ionization

People quickly started thinking if the "charge multiplication" effect could be exploited to create more radiation hard silicon detectors....

Test beam with 120 GeV proton at Fermilab

LGAD sensor test with 120 GeV proton beam

FNAL test beam facility (FTBT)

Beam properties at FTBT

- 120 GeV proton beam
- Beam width : few mm to few cm
- 100k protons per 4 second spill per minute

Strip and Pixel telescope

• Provides proton track position

Extra strip layer after cold box

- Prevent scattered proton
- Measure efficiency ~99%

Photek Micro-Channel Plate (MCP)

 Provided a very precise reference timestamp (~10 ps)

Cold box (Environmental Chamber)

• LGAD sensor and MCP are mounted

LGAD prototyping campaigns

- Optimization of gain layer & thickness for best time resolution
- Improving radiation hardness, Developing large arrays of sensors

Prototypes satisfy

- Time performance < 40 ps
- Uniform performance of all sensor surface

Irradiated FBK 2x8 arrays sensor test

Silicon Detector Facility (SiDet)

Validation of beta source measurement
 Irradiated FBK 2x8 arrays sensor test

- Signal amplitude
- Hit efficiency
- Timing performance
- Radiation damage

Prototype LGAD Sensor testing

Irradiated FBK 2x8 arrays sensor test – signal amplitude

22

x [mm]

10

12

14

16

18

20

22

x [mm]

E

Irradiated FBK 2x8 arrays sensor test - Hit efficiency

Efficiency measurement

• $eff = \frac{i}{proton track \&\& signal above threshold in LGAD pad}$

proton track in telescope

- \square Efficiency reaches $\sim\!99\%$ in all regions except for gaps
 - LGAD sensor maintains performance despite the radiation damage

Irradiated FBK 2x8 arrays sensor test – Timing performance

- Timing uniformity with respect to MCP reference
 - Time difference between time stamp of LGAD and MCP
 - $\circ \ \Delta t = |t_1(LGAD) t_0(MCP)|$
 - $\circ\,$ Time resolution : Δt distribution fit with Gaussian to obtain width σ_t

LGAD, MCP time stamp

- Larger signals (LGAD) reach threshold earlier
- Constant Fraction Discriminator (CFD)
 Threshold as fraction of peak amplitude

Irradiated FBK 2x8 arrays sensor test – Timing performance

Latest FBK production maintains less than 40 ps resolution for the entire lifetime

Time Resolution of HPK LGAD Sensor

□ Time resolution is obtained between timestamp of LGAD and MCP □ Δt distribution fit with Gaussian to obtain width σ_t □ Uniform at ~40 ps on 16-channel board

HPK type 3.1, 4x4 array ($3 \times 1 mm^2$ pads) Events CMS Preliminarv y [mm] esolution [s] work in progress 0.08 σ_t 0.06 34 33 0.04 32 0.02 31 18 20 x [mm] Time [ns]

CHANG-SEONG MOON (KNU)

Irradiated FBK 2x8 arrays sensor test – Collected charge

Radiation hardness test with HPK LGAD sensor

- □ Maintained LGAD performance by increasing Bias voltage.
- Time resolution of irradiated sensors can be achieved 40ps time resolution until the end of life at HL-LHC (1.5 x 10¹⁵ n_{eq}/cm²).

AC-LGAD strip sensor beyond CMS LGAD

(a) Combined efficiency in x direction.

Photograph of the AC-LGAD sensor. The seventeen individual strips are referenced according to labels 0 to 16, from left to right.

2 22.9 < y < 24.1 mm - Any Strip 20.48 < x < 20.62 mm Anv Strip Center Strip 100 Left Strip Right Strip Efficiency, 0.5 0.5 22 20.2 20.4 20.6 20.8 23 24 25 21 x [mm] y [mm]

Cross section of a segmented AC-LGAD. For simplicity, only three AC electrodes are shown, and the figure is not to scale.

Combined signal effciency of adjacent strips as a function of the proton track x and y position, for signals with amplitudes above a 100 mV threshold. In (a) individual strip effciencies are also shown, and vertical grey bands indicate the strip positions in the x-direction.

(b) Combined efficiency in y direction.

2020 JINST 15 P09038

100 mV

Efficiency,

EIC Asia Workshop

AC-LGADs for Electron Ion Collider

□ AC-LGAD based Time of Flight (TOF) can provide the Particle ID for every particle in EIC.

- based on 30 ps timing resolution
- $\,\circ\,$ Ideally coarse pitch (500 μm , 1-2 cm strips) for sparse readout
- $\circ\,$ TOF can be used tracking layer (~20 μm resolution)
- TOF ID complements Cherenkov-based ID for soft particles.

CHANG-SEONG MOON (KNU)

AC-LGADs for Electron Ion Collider

AC-LGAD TOF Detectors for EIC – eRD112

Barrel TOF Single layer with 30 ps resolution and $2\%X_0$ material budget per layer

Forward TOF Double layer with 25 ps resolution and 5%X₀ material budget per layer

Backward TOF

Double layer with 25 ps resolution and $5\%X_0$ material budget per layer

START Time 20 ps resolution Barrel TOF simulation (eta=0)

EIC Asia Workshop

Summary

The CMS MIP Timing Detector will measure precision timing of charged particles produced inside CMS.

- Provides significant pileup mitigation, furthering the experiment's mission in the HL-LHC era.
- Brings new capabilities to CMS that could help to search new phenomena in the HL-LHC.
- □ BTL will be instrumented with LYSO crystals + SiPMs, read-out by the TOFHIR
 - Beginning of life performance (30-40 ps) within requirements
 - \circ End-of-life performance (~ 60 ps) close to requirements \rightarrow optimization of SiPM cell size ongoing
- □ ETL will be instrumented with LGADs read out by the ETROC
 - Performance at beginning and end of life within requirements (single hit resolution < 50 ps)
 - $\circ\,$ LGAD market survey done \rightarrow Will enter a tender process soon.
 - Full-scale 16x16 ETROC2 arriving soon
- □ Common MTD DAQ system is being developed together for the ETL and BTL.
- Mechanical engineering of the full detector system is preparing.
- □ The development of CMS LGAD will have a positive impact on EIC.