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Beam clock fan-out




Commissioning without beam

0.

Necessary Software tools

Apply 100V bias (HV GUI). Diagnose any over current channels.

Power on a ladder by ladder (LV GUIs) and apply 100V bias. Run
the calibration. Make sure the results appears in the expected
ladder map in the Calibration Monitor.

Diagnose missing channels and try to recover.

Random trigger noise run (random external trigger). Debug any
large noise half ladder or channels.

Tune the alert range of LV/HV voltage/current control panels
(alert features of LV/HV GUI).

Save dead/hot channels in the database. (Expert GUI)



results of %2 barrel appears in a single page. Is it possible?
« Perhaps a calibration mode can be implemented to the
OnlineMonitor, but #of hits/strip is not sufficient. We

« Should have a calibration results at a glance. At least the
definitely need ADC vs. Amplitude 2D plots.

Calibration Monitor
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Commissioning with beam
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BCO Timing Scan (INTT Hit Yield/Event).
BCO Phase Scan fine tweak the timing with respect to BCO.
Mis-cabling check by the geometry (Event Display)
Diagnose missing channels and try to recover

Check yield uniformity (Online Monitor)

Gain matching between ladders or fine tweak noise

DAC Scan at HV=100V (DAC Scan Analyzer)

Bias Voltage Scan (MIP/MPV Fitter)

DACO threshold optimization. S/N evaluation chip by chip.



Timing Tune
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1. BCO Scan
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Analysis: Hit Yield per Event



2. BCO Phase Scan
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Fig. 32. Timing distribution of the FVTX hits relative to the RHIC beam clock.

6.1. Timing

The distribution in time of FVTX hits is studied relative to the
RHIC collision time by comparing the hit rate at different FVTX
delay values relative to the RHIC beam clock. The timing distribu-
tion for two sectors of wedges in the south arm is shown in Fig. 32.
Most hits fall in a window ~30 ns wide.

Two standard trigger timing configurations were used during
FVTX operation, as shown by the vertical lines in Fig. 32: during
relatively low trigger rate running (in heavy ion systems) hits
arriving in a time window two RHIC beam clocks (BCO) wide
(1 BCO~106 ns) are accepted. In high trigger rate p+p running, a
1 BCO-wide window is used to avoid recording accidental hits
from neighboring beam crossings (1 BCO apart).

On 2023/01/12 22:22, Huang, Jin wrote:

That was exactly how it was done and
highly recommended for intt too. It took
few hours of a special low bunch fill to
perform this scan, shifting BCO phase 19-
20ns at a time. That appears the only way
to set timing for the sub-bco delay

Jin



2. BCO Phase Scan
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Fig. 32. Timing distribution of the FVTX hits relative to the RHIC beam clock.
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| adder Geometrical Check



e |In early stage of the commissioning, sSPHENIX is

3 . |_| |-t I\/l atch | N g operated with magnetic field off.

e Tracks are expected to be straight.

« At the 45-55% centrality collision, 80/| 7| tracks
5.0 _ -> 4 tracks/half ladder -> 0.15 hit/chip.
B /—-\  Matching hits between LO and L1 can be
identified by eye using the event display
////'—._\ \ without fancy tracking algorithm.
I/ // \\\\ 8001:—. 0-6% Au+Au 200 GeV u25-35%_:
‘ ‘ 3 , ' F o 6:15% Acceptance + 35-45% 1
24 ladde - » 15-25% ..--p......,..,--... o 45-55% A
\\\\ // // st P N
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https://wiki.sphenix.bnl.gov/index.php/INTT_GEANT_model/geometry#/media/File:2020-05-30-160330_940x871_scrot.png



DAC Scan
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« Chip-by-Chip Base « Fitting with Half ladder by half ladder
e Clustering Landau+Gaussian
« Normalization btwn convolution function. ‘
adjacent runs All ladders

» Concatenate all runs Save all fitting parameters:

MPV, Width, y
From ELPH annual report and Cheng-Wei's slide 2022/4/15



How Energy Deposit Looks like in sSPHENIX?
DACOF —NR—=70O0—=HHbE»H>H?

Cheng-Wei's slide 2022/4/15
BEAM Test
Testbeam2021, 50 V

Positron beam, 1 GeV
Inactive Area Chip 300

DAC Scan all 11
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To be studied by a in advance. 15




Sias Voltage Scan



Bias Voltage Dependence

Cheng-Wei's slide 2022/4/15

- i/A\\ Based on the theory :
2 IC = €oXpy (5)‘ c 1 1 1
T X — X x
\/‘_/ signal
W= \/26 (V R Vbi)/Ne = \/QPNE(V - Vbi) ltaru's Slide 2022/06/22

C : capacitance
d : the distance of the depletion region

Principles of operation
V : supply bias voltage
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Cheng-Wei Shih (NCUHEP, Taiwan) | 5



Electric Tield at non-Tully depleted voltage

This area between strips might not
be depleted even slightly below the
depletion voltage. Thus we cannot

Electric field between strips are
developed towards the last stage of

expect efficient charge collection
fully depletion voltage. > s

from this area.

The best way to prove
this hypothesis is to see
the position dependence
of the resolution within
the strip width.

We'll see a dip in the
efficiency distribution
around the edge of a strip.

The electric field just below strip is Not sure if this is doable
well developed as a function of bias with cosmic ray---
voltage. This directly appears as CV

response.

18
Itaru‘s Slide 2022/06/22



Bias Voltage Scan Plan

 Importance: It is likely we ends up with operating <100V due

to over current of some silicons.

 We need to know the collecting # of electrons below 100V.

DACO 108 128 148
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« Scan at 90V, 80V, 70V, 60V, 50V only around MIP region.

Single hit
Peak ~ 130

~N o 6o B WN B

MPV vs Bias Voltage

FNAL2019

ELPH2021

Observation

I I >
50V 100V Bias voltage

« Need immediate semi-online analysis (DAC Scan code) if data is satisfactory to cover MPV peak.

« The goal is to make the plot of MPV vs. Bias voltage.
« Not sure if we can run a simulation.

19



DACO Threshold Scan



DACO Threshold Scan
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« We may need to customize the DACO value Chip-by-Chip Basis for noisy chips
+ Need to confirm MPV/MIP are same for all Chips. 21



Yield Uniformity

e Online Monitor



NMonitoring

1. Define online monitor. Develop and test anomaly (dead/hot
channel) checker.

2. Establish flushing anomaly checker results to database.
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Fig. 35. Typical calibration data for a single channel (data points), fit with a normal

cumulative distribution function.
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Fig. 36. Histogram of the noise parameter, o, for all channels under operating
conditions, in a typical calibration run. A Gaussian distribution fit to the data gives a
mean noise level of 367 electrons. The nominal discriminator threshold at ~2500
electrons is shown by the vertical line. 24



