X線バーストにおける重要不安定核 反応の実験的検証 Experimental investigation of relevant unstable-nucleus reactions in X-ray bursts

Hidetoshi Yamaguchi 山口英斉 *Center for Nuclear Study (CNS), the University of Tokyo*

Topics

Experimental evaluation of reactions from an unstable nucleus
 (RI) to another RI relevant for X-ray bursts ⇒ still challenging,
 due to the limited intensity of RI beams.

Two recent examples at CRIB (RI beam separator of U-Tokyo):

 ²²Mg(α, p)²⁵Al reaction study with resonant scattering Jun Hu, H. Yamaguchi et al., Phys. Rev. Lett. **127**, 172701 (2021).

²⁶Si(α, p)²⁹P reaction study with direct measurement
 Measurement performed in 2022, analysis in progress (K. Okawa's Ms thesis)

CRIB/OEDO in **RIBF**

RI-beam apparatuses operated by CNS, the University of Tokyo at RIBF

- CRIB: RI beam separator for low-mass, low-energy (<10 MeV/u) RI beams
- SHARAQ: high resolution spectrometer
- OEDO: new low-energy (20-50 MeV/u) beamline for exotic beams

CRIB – Low energy RI beam separator of CNS

- CNS Radio-Isotope Beam separator, operated by CNS (Univ. of Tokyo), located at RIBF (RIKEN Nishina Center).
 - Low-energy(<10MeV/u) RI beams by in-flight method.</p>
 - Primary beam from K=70 AVF cyclotron.
 - Momentum (Magnetic rigidity) separation by "double achromatic" system, and velocity separation by a Wien filter.

H. Yamaguchi@ULIC WS

H. Yamaguchi@ULIC WS

CRIB is collaborative

Recent CRIB collaborators (only the main institutes that proposed an experiment are shown):

Key α -induced reactions in X-ray bursts

- The "rp-process" in X-ray bursts (T_{max} can be 2-3 GK) takes a path including (α , p) reactions to skip sequential (p, γ) and β decays... the α pprocess.
- Several key (α, γ) and (α, p) reactions, from an RI to another RI (i.e. difficult to study it experimentally) affect much to the X-ray light curve.

Typical situation

For those RI-to-RI astrophysical (α , p) reactions,

- Reaction rates are often dominated by resonant reactions.
- Most effective reactions are exothermic (positive Q-value). The *p* channel is located below the α channel and $\Gamma_{\alpha} << \Gamma_{p}$
- Resonances just above the α threshold are most relevant; E_{c.m.} is small in stellar reactions, ~1 MeV order at T=1 GK.

 $X(\alpha, p)$ reaction

Study of resonance parameters

The Breit-Wigner formula:

•

 $\sigma(E) = \pi \lambda^2 \frac{2J + 1}{(2J_1 + 1)(2J_2 + 1)} (1 + \delta_{12}) \frac{\Gamma_a \Gamma_b}{(E - E_b)^2 + (\Gamma/2)^2}$ $X(\alpha, p)$ reaction λ : de Broglie wavelength J_1, J_2, J : spins of projectile, target, excited state in the compound nucleus δ_{12} : 1 for identical particles, 0 otherwise Γ_a, Γ_b : Widths of entrance and exit channels Γα Ec.m. 🕇 Γ_p is telling us the resonant reaction cross section σ is known $X + \alpha$ by the resonance parameters: $E_{\rm r}$, J^{π} , decay widths Γ_{α} , $\Gamma_{\rm p}$, and $\Gamma_{\rm total}$. Z+pIn the typical case, $\Gamma_{\alpha} << \Gamma_{p} \sim \Gamma_{\text{total}}$

H. Yamaguchi@ULIC WS

this implies the effect of Γ_{α} is greater than Γ_{p} .

Y

Resonant scattering from inverse reaction channel

 Resonant scattering...A good method to observe resonances with a high cross section (even feasible with RI beams). Resonance parameters can be determined by R-matrix analysis.

We can study resonances in Y via

X+ α scattering (α -resonant scattering) or inversely,

Z+*p* scattering (proton resonant scattering)

- X+α...the scanned energy is quite low. The most relevant resonances (at Gamow energy) are buried under Rutherford scattering and hardly seen.
- Z+p...Thanks to the lower threshold energy, we can observe relevant resonances, and determine E_r , J^{π} , and Γ_p , (but no Γ_{α}). "Resonant scattering from inverse reaction channel".

Our recent publication on ${}^{22}Mg(\alpha, p)$: One application of the "resonant scattering from inverse reaction channel"

PHYSICAL REVIEW LETTERS 127, 172701 (2021)

Advancement of Photospheric Radius Expansion and Clocked Type-I X-Ray Burst Models with the New ${}^{22}Mg(\alpha,p){}^{25}Al$ Reaction Rate Determined at the Gamow Energy

J. Hu (胡钧)^{6,1,2,*} H. Yamaguchi (山口英斉)^{6,3,4} Y. H. Lam (藍乙華)^{6,1,2,†} A. Heger^{6,5,6,7,8} D. Kahl^{6,9,10} A. M. Jacobs,^{8,11} Z. Johnston^{6,11} S. W. Xu (许世伟),¹ N. T. Zhang (张宁涛),¹ S. B. Ma (马少波),¹ L. H. Ru (茹龙辉),¹ E. Q. Liu (刘恩强),¹ T. Liu (刘通)^{6,1} S. Hayakawa (早川勢也)^{6,3} L. Yang (杨磊)^{6,3,*} H. Shimizu (清水英樹),³ C. B. Hamill,¹⁰ A. St J. Murphy,¹⁰ J. Su (苏俊)^{6,12} X. Fang (方晓),¹³ K. Y. Chae (オ君名),¹⁴ M. S. Kwag (락민식),¹⁴ S. M. Cha (차수미),¹⁴ N. N. Duy^{6,14,15} N. K. Uyen,¹⁴ D. H. Kim (召두尅),¹⁴ R. G. Pizzone^{6,16} M. La Cognata^{6,16} S. Cherubini,¹⁶ S. Romano^{6,16,17,18} A. Tumino,^{16,19} J. Liang,²⁰ A. Psaltis,²⁰ M. Sferrazza,²¹ D. Kim (召中司),²² Y. Y. Li (李依阳),^{1,2} and S. Kubono (久保野茂)^{3,23} ¹Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China ²School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China ³Center for Nuclear Study(CNS), the University of Tokyo, RIKEN campus, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan ⁴National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan ⁵School of Physics and Astronomy, Monash University, Victoria 3800, Australia ⁶OzGrav-Monash—Monash Centre for Astrophysics, School of Physics and Astronomy, Monash University, Vic 3800, Australia ⁸The Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, Michigan 48824, USA ⁹Extreme Light Infrastructure - Nuclear Physics, IFIN-HH, 077125 Bucharest-Mãgurele, Romania ¹⁰SUPA, School of Physics & Astronomy, University of Edinburgh Edinburgh EH9 3FD, United Kingdom ¹¹Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA ¹²Culver of Macher Science and Technology, University One Science Physics, Device

²²Mg(α, p) in Type I X-ray bursts

$$\label{eq:14} \begin{split} ^{14}O(\alpha,p)^{17}F(p,\gamma)^{18}Ne(\alpha,p)^{21}Na(p,\gamma)^{22}Mg(\alpha,p)^{25}Al \\ (p,\gamma)^{26}Si(\alpha,p)^{29}P(p,\gamma)^{30}S(\alpha,p)^{33}Cl(p,\gamma)^{34}Ar(\alpha,p) \\ ^{37}K(p,\gamma)^{38}Ca(\alpha,p)^{41}Sc \end{split}$$

R. Cyburt et al.

THE ASTROPHYSICAL JOURNAL, 830:55 (20pp), 2016 October 20

Table 2				
Reactions that Impact the Burst Light Curve				
in the Multi-zone X-ray Burst Model				

Rank	Reaction	Type ^a	Sensitivity ^b	Category
1	$^{15}\mathrm{O}(\alpha, \gamma)^{19}\mathrm{Ne}$	D	16	1
2	⁵⁶ Ni(α, p) ⁵⁹ Cu	U	6.4	1
3	${}^{59}Cu(p, \gamma){}^{60}Zn$	D	5.1	1
4	61 Ga(n, $\sim)^{62}$ Ge	D	37	
5	$^{22}Mg(\alpha, p)^{25}Al$	D	2.3	
0	$10(\alpha, p)^{17}\mathbf{F}$	Ū	3.8	
7	23 Al(p, γ) 24 Si	D	4.6	1
8	¹⁸ Ne(α , p) ²¹ Na	U	1.8	1
9	63 Ga(p, $\gamma){}^{64}$ Ge	D	1.4	2
10	19 F(p, $\alpha)^{16}$ O	U	1.3	2
11	$^{12}\mathrm{C}(\alpha, \gamma)^{16}\mathrm{O}$	U	2.1	2
12	${}^{26}{\rm Si}(\alpha, p){}^{29}{\rm P}$	U	1.8	2
13	${}^{17}F(\alpha, p)^{20}Ne$	U	3.5	2
14	$^{24}Mg(\alpha, \gamma)^{28}Si$	U	1.2	2
15	${}^{57}Cu(p, \gamma){}^{58}Zn$	D	1.3	2
16	60 Zn(α , p) 63 Ga	U	1.1	2
17	${}^{17}F(p, \gamma){}^{18}Ne$	U	1.7	2
18	40 Sc(p, $\gamma)^{41}$ Ti	D	1.1	2
19	${}^{48}{\rm Cr}({\rm p},\gamma){}^{49}{\rm Mn}$	D	1.2	2

Notes.

^a Up (U) or down (D) variation that has the largest impact. ^b $M_{IC}^{(i)}$ in units of 10^{38} erg s⁻¹.

The ${}^{22}Mg(\alpha,p){}^{25}Al$ reaction rate as a function of the temperature for the Hauser-Feshbach predictions TALYS and non-SMOKER

Direct measurement of ${}^{22}Mg(\alpha,p)$ at MSU

Randhawa et al., Phys. Rev. Lett (2020): First direct measurement of ${}^{22}Mg(\alpha, p)$.

NSCL; ~5 MeV/u (broad?) ²²Mg beam 900 cps, reaction measured with AT-TPC.

Data points only at energies corresponding to T > 2.6 GK (cf. most relevant *T* range they claim: below 1 GK).

Reaction rate evaluated by extrapolation down to the stellar energy with a statistical-model (NON-SMOKER) calculation. Reliable?

PHYSICAL REVIEW LETTERS 125, 202701 (2020)

FIG. 3. Panel (a) shows the experimental cross sections obtained in the present work over a range of center-of-mass energies covered (black). For all the points, the cross section weighted energy is shown, which is the reason why horizontal error bars for the two lowest energy points are asymmetric. Panel (b) shows the reaction rate comparison of the current work to different model predictions and to the previous measurement by Matic *et al.* [11].

Status of resonance studies

Experimental Setup at F3 focal plane

²⁵Al beam:
2 x 10⁵ pps, 80%
purity

 25 Al RI beam at CRIB, (142 \pm 1) MeV, 2 x 10⁵ pps, 80% purity.

Resonances in ²⁶Si are scanned by proton resonant scattering of ²⁵Al+ p... exit channel of ²²Mg(α , p).

The spin parities of 5 states above the α threshold were determined for the first time ... reaction rate evaluated with parameters of those resonances (E, J^{π}, Γ_{p}) .

 Γ_{α} were not known from the measurement, and evaluated with the spectroscopic factor of the mirror ²⁶Al nucleus by Matic et al.

Updated ²²Mg(α ,p) reaction rate

Red curve ...our new rate (resonant reaction rate) Blue curve... MSU latest work (extrapolation)

These two are not too much different for the X-ray burst temperature.

Our uncertainty is mostly smaller than MSU, even though the error associated with extrapolation with statistical model calculation is not included in their evaluation.

X-ray burst simulations

Light curves with a new XRB model (by Dr. Lam Yi Hua) \rightarrow Improved reproducibility of the observational data (GS1826-24, SAXJ1808.4-3658). ²²Mg(α ,p) produces a visible effect.

FIG. 3. The best fit *baseline* and *Present* modeled lightcurves to the observed lightcurve of epoch Jun 1998, and the best fit Randhawa *et al.* [22] lightcurves to epoch Sep 2000. The magnified lightcurves at the burst peak and t=20-70 s are shown in the left and right insets, respectively.

H. Yamaguchi@ULIC WS

FIG. 4. The bursts' fluences (integration of flux over time) and times for SAX J1808.4-3658 burster, based on the RXTE observation [4], Johnston *et al.* [8] and Goodwin *et al.* [9] models, and present calculations. Johnston *et al.* [8] model is adopted to study the present and Randhawa *et al.* rates.

Helium abundance in the accreting envelope seems to be essential

The ²⁶Si(α,p)²⁹P reaction

Table 1					
Reactions that Impact the Burst Light Curve in the Single-zone	X-Ray Burst				
M dd					

$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Model			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rank	Reaction	Type ^a	Sensitivity ^b	Category	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	⁵⁶ Ni(α, p) ⁵⁹ Cu	U	12.5	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	${}^{59}Cu(p, \gamma){}^{60}Zn$	D	12.1	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	$^{15}O(\alpha, \gamma)^{19}Ne$	D	7.9	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	$^{30}S(\alpha, p)^{33}Cl$	U	7.8	1	
	5	²⁶ Si(α, p) ²⁹ P	U	5.3	1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	${}^{61}Ga(p, \gamma){}^{62}Ge$	D	5.0	1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	$^{23}Al(p, \gamma)^{24}Si$	U	4.8	1	
Table 2 Reactions that Impact the Burst Light Curve in the Multi-zone X-ray Burst Model Rank Reaction Type ^a Sensitivity ^b Categor 1 $^{15}O(\alpha, \gamma)^{19}Ne$ D 16 1 2 $^{56}Ni(\alpha, p)^{59}Cu$ U 6.4 1 3 $^{59}Cu(p, \gamma)^{60}Zn$ D 5.1 1 4 $^{61}Ga(p, \gamma)^{62}Ge$ D 3.7 1 5 $^{22}Mg(\alpha, p)^{25}Al$ D 2.3 1 6 $^{14}O(\alpha, p)^{17}F$ D 5.8 1 7 $^{23}Al(p, \gamma)^{24}Si$ D 4.6 1 8 $^{18}Ne(\alpha, p)^{21}Na$ U 1.8 1 9 $^{63}Ga(p, \gamma)^{64}Ge$ D 1.4 2 10 $^{19}F(p, \alpha)^{16}O$ U 1.3 2 11 $^{12}C(\alpha, \gamma)^{16}O$ U 2.1 2 12 $^{26}Si(\alpha, p)^{29}P$ U 1.8 2 13 $^{17}F(\alpha, p)^{29}Ne$ U 3.5	8	${}^{27}P(p, \gamma){}^{28}S$	D	4.4	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rank	Reaction	Type ^a	Sensitivity ^b	Category	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	¹⁵ O(α, α) ¹⁹ Ne	D	16	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	⁵⁶ Ni(α, p) ⁵⁹ Cu	U	6.4	î	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	${}^{59}Cu(p, \gamma){}^{60}Zn$	D	5.1	1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	${}^{61}Ga(p, \gamma){}^{62}Ge$	D	3.7		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	$^{22}Mg(\alpha, p)^{25}Al$	D	2.3		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	$^{14}O(\alpha, p)^{17}F$	D	5.8	1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	$^{23}Al(p, \gamma)^{24}Si$	D	4.6	1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	¹⁸ Ne(<i>a</i> , p) ²¹ Na	U	1.8	1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	63Ga(p, γ)64Ge	D	1.4	2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	$^{19}F(p, \alpha)^{16}O$	U	1.3	2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	${}^{12}C(\alpha, \gamma){}^{16}O$	U	2.1	2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	${}^{26}\text{Si}(\alpha, p){}^{29}\text{P}$	U	1.8	2	
14 ${}^{24}Mg(\alpha, \gamma){}^{28}Si$ U 1.2 2	13	${}^{17}F(\alpha, p){}^{20}Ne$	U	3.5	2	
	14	$^{24}Mg(\alpha, \gamma)^{28}Si$	U	1.2	2	

•R.H. Cyburt et al., Astrophys. J. 830, 55 (2016).

 The ²⁶Si(α,p)²⁹P reaction has a <u>high sensitivity on the light curve</u>

Effect on the ²⁶Al abundance

- The galactic 1.808 MeV gamma ray of ²⁶Al
 - Evidence of the ongoing process of the nucleosynthesis
 - Doppler shift of the line => rotation of the Galaxy
- The ²⁶Si(α,p)²⁹P reaction has also sensitivity on the abundance of ²⁶AI

TABLE 3 SAME AS TABLE 1, BUT FOR MODEL F08 (FISKER ET AL. 2008)

Reaction	Isotope	10	0.1
$^{12}C(p, \gamma)$ ¹³ N	¹² C	0.41	
$^{12}C(\alpha, \gamma)^{16}O$	¹² C	0.42	
	¹⁶ O	3.27	0.36
	²⁰ Ne	3.03	0.42
	²⁴ Mg	2.40	
${}^{16}O(\alpha, \gamma)^{20}Ne$	¹⁶ O	0.11	8.36
20 Ne(α , γ) ²⁴ Mg	²⁰ Ne	0.10	9.84
$^{22}Mg(\alpha, p)^{25}Al$	²⁵ Mg		8.81
	²⁷ Al		2.23
$^{24}Mg(p, \gamma)$ ^{25}Al	²⁵ Mg	3.02	0.43
$^{24}Mg(\alpha, \gamma)^{28}Si$	²⁴ Mg	0.18	4.16
	²⁵ Mg	0.24	4.10
$^{25}Al(\alpha, p)^{28}Si$	²⁵ Mg	0.22	2.36
$^{26g}Al(p, \gamma)^{27}Si$	27A1	2.71	0.40
$^{26g}Al(\alpha, p)^{29}Si$	²⁶ Mg		2.34
	26gAl	0.08	2.38
	²⁷ A1	0.40	
${}^{26}\text{Si}(\alpha, p){}^{29}\text{P}$	^{26g} Al	0.08	
	27Al	0.23	
$^{27}Al(\alpha, p)^{30}Si$	²⁷ Al	0.32	
²⁷ Si(α, p) ³⁰ P	²⁷ A1	0.30	
$^{28}Si(\alpha, \gamma)^{32}S$	²⁸ Si	0.43	
	³² S	3.73	0.37

Parikh *et al.*, Astrophys. J. Suppl. Ser. **178**, 110 (2008)

Collaboration/ beamtime

CNS: S. Hayakawa, K. Okawa, N.R. Ma, H. Shimizu H. Yamaguchi, Q. Zhang,

T. Chillery, S. Hanai, N. Imai, J. Li, S. Michimasa, R. Yokoyama

SKKU: K.Y. Chae, M.J. Kim, N.N. Duy, G.M. Gu, C.H. Kim, S.H. Kim, M.S. Kwag,

N.K. Uyen,

IBS: S.M. Cha, D. Kim

Osaka: S. Adachi, T. Furuno, K. Sakanashi, T. Kawabata

ELI-NP: D. Kahl, O. Sirbu

RIKEN: S. Kubono

The first CRIB main experiment after COVID.

Foreign collaborators could not come to Japan from due to COVID19 restriction

Domestic collaborators from Osaka U. and CNS

Online communication during the machine time (Zoom + Slack + YouTube live)

Graduate students working on analysis (Okawa, M.J. Kim)

Proton event selection

 α and *p* were clearly identified. Selected proton events as candidates of (α, p) reaction products

Background from the elastic scattering of ²⁶Si + p

• Low energy (<10 MeV) proton events were likely to be elastic scattering at the window (Mylar $C_{10}H_8O_4$) \rightarrow consistent with a Monte Carlo calculation

 However, spectra of the He-target run and Ar-target background run are still similar in 10 – 15 MeV region.

Evaluated the yield of the (α,p) reaction by <u>subtracting all proton events</u> <u>from the background events</u>

Yield compared with calculation

Simulation with NON-SMOKER cross section

- The subtracted yield was lower than theoretical yield by over one order of magnitude
 - Experiment: ~ 5 events vs calculation: ~ 120 events, per 0.2 MeV, around 7.0 MeV

Summary

- CRIB is an RI beam facility in RIBF operated by CNS, the University of Tokyo, providing low-energy (<10MeV/u) in-flight RI beams with high intensity and purity.
- Unique studies with low-energy RI beams have been made. Recent highlights are:
 - ${}^{22}Mg(\alpha, p)$ reaction study with the resonant scattering method

 \rightarrow Reaction rate updated with the resonant reaction evaluation. Implication to the X-ray burst light curve was discussed.

• ${}^{26}Si(\alpha, p)$ reaction study with the direct measurement.

 \rightarrow The preliminary result shows the yield seems to be more than factor 10 lower than the theoretical calculation.

- We welcome new collaborators and new ideas. Please contact with me if you have any idea.
- Visit CRIB webpage for more information. http://www.cns.s.utokyo.ac.jp/crib/crib-new/ *H. Yamaguchi@ULIC WS*