2023/02/20 Riken RIBF mini-workshop

星の進化での元素合成

Koh Takahashi/高橋 亘 東北大学

アウトライン

- ・自己紹介
- ・銀河化学進化への恒星の役割
- ・恒星モデルの基礎事項
- ・核反応の役割と不定性
- ・エネルギー源としての核反応
- ・化学進化に重要な核反応
- ・まとめ

…どうして恒星を研究するか …どのように恒星を研究するか

自已紹介

- ・なまえ: 高橋亘 たかはし こう
- ・研究テーマ

恒星進化の理論モデリング 磁場と自転の効果のモデル化と検証 超新星親星のモデリング 初期宇宙での特異な恒星進化と元素合成

• 略歴

東京大学天文学教室 2017年学位取得(指導:梅田秀之) ドイツ(ボン、ポツダム)でポスドク → 2022年 4月から東北大学 特任助教

銀河化学進化への恒星の役割 1/2

Credit: NASA and the Night Sky Network

銀河のいたるところで恒星が生まれ死んでいく。 恒星の"lifecycle"の結果、宇宙には金属が満ちていく。

銀河化学進化への恒星の役割 2/2

Credit: C. Kobayashi 2020, Kavli IPMU

元素の起源:ほとんど恒星 青色:大質量星 緑色:中質量星 赤色: Ia 型超新星(中質量星連星) +中性子連星も重要な起源天体

今日のトピック 恒星による元素合成はどのように計算されるか? ・核反応率の正確な見積りはどのような場合に重要か?

恒星モデルの基礎事項

- ・恒星とは?
- ・恒星の「進化」
- ・恒星の熱源
- ・シミュレーションの例

・電子の縮退圧:なぜ星質量が重要か

恒星モデルの基礎事項1/5

重力的に不安定な星間分子雲が収縮し、 恒星は生まれる。

- ・自分の重力でまとまっている(自己重力系)
- ・圧力で重力に対抗する

恒星の力学的構造(静水圧構造): $= \frac{GM\rho}{r^2}, \quad \frac{\partial M}{\partial r} = 4\pi r^2 \rho, \quad \text{relation between } P \text{ and } \rho$

温度&組成により決定

恒星モデルの基礎事項2/5

恒星は宇宙空間より高温なので冷えている最中。

- ・前期段階なら表面から光子を放射
- ・後期段階なら内部でニュートリノを放射

→ 恒星は冷えることで構造を変化させる: 「恒星進化」

$L = L(r, M, T, \rho, X, , ,)$

恒星モデルの基礎事項3/5

恒星は内部に熱源をもつはず

- ・太陽光度 ~ 4e33 erg s⁻¹
- 太陽の全エネルギー ~ GM²/R ~ 4e48 erg →熱源がない場合 10^{15} s ~ 30 Myr (<< T_{earth}) で冷えてしまう。

核反応が熱源: 「核燃焼」

- P_{center} ~ $GM\rho/R$ ~ nkT_{center}
- $(k/m_p)T_{center} \sim GM/R \sim 2e15 \text{ erg g}^{-1}$
- \rightarrow T_{center} ~ 2×107 K : 核反応に十分 冷えてつぶれるほど内部は高温になる

恒星モデルの基礎事項 4/5

- ・つぶれるほど高温
 - → 後期段階ほど重たい核種の反応
- ・温度のピークは
 - 電子の縮退圧が優勢になるとき
 - …ぎゅうぎゅうすぎてフェルミエネルギーが温度を超えると 圧力が密度だけで決まるようになり、温度を下げられるよ うになる。

「縮退圧がいつ効き始めるか=進化がいつ止まるか」 は星の質量によって決まる。

→ 星質量は恒星の運命を決める 最重要パラメータ

M_{*} ≤ 8 M_☉:進化は停止し白色矮星を残す(中小質量星) $\gtrsim 8 M_{\odot}$:鉄のコアの崩壊まで進化が進む(大質量星)

恒星モデルの基礎事項5/5

現実的な	シ	111	ユ	レー	シ	Ξ	ン
------	---	-----	---	----	---	---	---

星構造の時間発展モデルは次式に基づいている:

力学的構造	$\frac{\partial P}{\partial r} = \frac{GM\rho}{r^2}, \frac{\partial M}{\partial r} = 4\pi r^2 \rho$
熱的構造	$\frac{\partial e_{\rm thm}}{\partial t} = -p \frac{\partial (1/\rho)}{\partial t} + \epsilon - \epsilon_{\nu} - \frac{\partial L}{\partial r}, L(r, M, T)$
組成構造	$\frac{\partial X_i}{\partial t} = f(T, \rho, X, , ,)$

+恒星風、超新星爆発による物質放出

→ 恒星由来の放出物質が

どのような元素組成を持つか をモデル化している

アウトライン

- 自己紹介
- ・恒星モデルの基礎事項
- ・核反応の役割と不定性
- ・化学進化に重要な核反応
- ・まとめ

・銀河化学進化への恒星の役割

・エネルギー源としての核反応

核反応の役割と不定性 1/2

- ・星の構造を決定する
- ・星の主要な成分が燃料になる
- ・「灰」が次のステージでの燃料になる

銀河化学進化に影響

- ・構造には影響しないが、放出物質として重要
- ・今日の例: s-process

核反応率は恒星モデルの大きな不定性の源 ・恒星内部の"低温"環境は実験室での再現がむずかしい

核反応の役割と不定性2/2

「重要かつ不定」な反応率が恒星進化シミュレーションから探られている

Longland-Rauscher の方法 (Longland et. al. 2010, Rauscher et al. 2016) 1. 不定性のずれを反映した反応率表を確率的に多数作成(モンテカルロ法) 2. 反応率セットの分だけ組成進化シミュレーションを遂行 3. 進化計算の結果の諸量(e.g. 年齢)と反応率との相関を測る

セ	ットA	セットB	• • •	
反応1	λ A1	λ B1		
反応2	λ A2	λ B2		
• • •	• • •	• • •		セットA
				セットC

大質量星の進化過程に注目: Farmer et al. 2016, Fields et al. 2018 s-process に注目: Nishimura et al. 2017, Cescutti et al. 2018

熱源としての核反応1/7

水素燃焼

- ・質量・エネルギー変換が最も効率的
- ・長寿命
- ・ 恒星の ~90% は水素燃焼期の星

CNO cycle

- ・中質量以上の恒星の主要な経路
- ・触媒として 誕生時から存在する C, N, O を用いる

熱源としての核反応2/7

不定性の大きい重要な反応 (CNO cycle)

14N(p,γ)150の反応率不定性が卓越

- ・最も遅い律速反応
- ・水素燃焼の期間を決定
- ・準平衡状態のCNO量を決定

→ CNO cycle に関わる反応率は 比較的 精度良く求まっている

熱源としての核反応3/7

ヘリウム燃焼

- ・それなりの変換効率・寿命
- ・恒星の~10%はヘリウム燃焼期の星

後期は¹²C(a,g)¹⁶O

CとOの比はその後のコア構造に大きく影響する

- ・超新星爆発の質量域 (Sukhbold et al. 2020)
- ・ペア不安定型超新星の質量域 (Takahashi 2018) など非常に広範な影響

執源としての核反応 4/7

不定性の大きい重要な反応

→ 炭素量は 反応率の変化だけでも~10% 構造変化を介した間接的影響も含むと>50% も変わる (Fields et al. 2018)

熱源としての核反応5/7

炭素燃焼

- ・高温のためニュートリノ冷却と共存
- ・炭素燃焼期の対流進化は星の構造決定に非常に重要

Branching $^{12}C+^{12}C \rightarrow ^{24}Mg^* \rightarrow ^{24}Mg + \gamma (13.93 \text{ MeV})$ $\rightarrow 20 \text{Ne} + \alpha (4.61 \text{ MeV})$ $\rightarrow ^{23}Na + p (2.23 \text{ MeV})$ $\rightarrow 23Mg + n (-2.60 MeV)$

不定性の大きい重要な反応 (Fields et al. 2018) $^{12}C(^{12}C,p)^{23}Na, ^{12}C(^{16}O,p)^{27}Al, ^{12}C(^{16}O,\alpha)^{24}Mg$ …ONeコア質量、中心温度等に影響 ※影響するメカニズムの詳細は不明

熱源としての核反応 6/7

酸素燃焼

- ・短命 (<~1 yr)
- ・質量当たりの発熱量が大きい

Branching $^{16}O+^{16}O \rightarrow ^{32}S^* \rightarrow ^{32}S + \gamma (16.54 \text{ MeV})$ $\rightarrow 28$ Si + α (9.59 MeV) \rightarrow ³¹P + p (7.67 MeV) \rightarrow ³¹S + n (1.453 MeV)

不定性の大きい重要な反応 (Fields et al. 2018) $16O(16O, \alpha)^{28}S_{1}$, $16O(16O, p)^{31}P$, $16O(16O, n)^{31}S$ …Siコア質量、中心Ye など諸量に影響 ※影響するメカニズムの詳細は不明

熱源としての核反応7/7

- ネオン燃焼・シリコン燃焼
 - ・光分解がトリガー(吸熱)
 - ・放出された粒子が捕獲されると、正味で発熱
 - ・反応率不定性は炭素燃焼と比べ大きくない (Fields et al. 2018)

Si burning $^{28}\text{Si} + \gamma \rightarrow ^{24}\text{Mg} + \alpha$, ^{28}Si α $\rightarrow 27Al + p \rightarrow \cdots$ $\rightarrow 27$ Si+n 24Mg n $20 \mathrm{Ne}$

↑高温なので準統計平衡のクラスターを形成 個別の反応率にはあまりよらない (Ekström 2021)

化学進化に重要な核反応 1/3

slow n-capture process (s-process)

- ・星の構造には影響しない
- ・鉄より重い元素(A>~60)の合成プロセスとして重要
- ・ β decay より遅い中性子捕獲反応の連続

Credit: C. Kobavashi 2020. Kavli IPMI

Credit: Iliadis 2015

化学進化に重要な核反応 2/3

main s-process

- ²⁰⁹Bi までの元素を合成
- ・中質量星(AGB星)のコア表面で生じる
- · 中性子源: ¹³C(α,n)¹⁶O

不定性の大きい重要な反応

・Koloczek et al. 2016 の重要な反応のリスト

Reaction Type of effect		Affected isot
⁵⁶ Fe(n, γ)	Competing capture	196
64 Ni(n. γ)	Competing capture	183
$^{14}N(n, p)$	Neutron poison	175
$^{12}C(p, \gamma)$	Neutron donator	158
$^{13}C(p, \gamma)$	Neutron poison	150
$^{16}O(n, \gamma)$	Neutron poison	145
²² Ne(n, γ)	Neutron poison	144
88 Sr(n, γ)	Competing capture	131
13 C(α , n)	Neutron donator	114
⁵⁸ Fe(n, γ)	Competing capture	112
$^{14}C(\alpha, \gamma)$	Neutron poison	102
14 C(β^{-})	Neutron poison	95
¹³⁸ Ba(n, γ)	Competing capture	95
140 Ce(n, γ)	Competing capture	93
139 La(n, γ)	Competing capture	92
¹⁴² Nd(n, γ)	Competing capture	87

Credit: Koloczek et al. 2016

ほかに sequence 中の重要な反応率: ⁵⁶Fe(n, γ), ⁶⁴Ni(n, γ), ¹³⁸Ba(n, γ), etc.

化学進化に重要な核反応 3/3

weak s-process

- A~90 (⁹⁰Th) までの元素を合成
- ・大質量星のCOコア内で生じる
- 中性子源: ²²Ne(α,n)²⁵Mg

不定性の大きい重要な反応

・Nishimura et al. 2017 の重要な反応のリスト

Nuclide	$r_{\rm cor, 0}$	$r_{\rm cor,\ 1}$	$r_{\rm cor, 2}$	Key rate Level 1
⁶⁴ Zn	<u>0.76</u>			64 Cu $(\beta^{-})^{64}$ Zn
	-0.46	-0.73		
67 Zn	-0.67			67 Zn(n, γ) 68 Zn
72 Ge	-0.85			72 Ge(n, γ) 73 Ge
⁷³ Ge	-0.84			73 Ge(n, γ) 74 Ge
⁷⁴ Ge	-0.44	-0.54	-0.67	
⁷⁵ As	-0.50	-0.59	-0.70	
⁷⁷ Se	-0.86			77 Se(n, γ) 78 Se
⁷⁸ Se	-0.71			78 Se(n, γ) 79 Se
	0.38	0.68		
⁸⁰ Se	-0.76			${}^{80}{\rm Br}(\beta^{-}){}^{80}{\rm Kr}$
	0.27	0.73		
	0.16	$\overline{0.44}$	0.88	
⁷⁹ Br	-0.64	-0.73		
⁸¹ Br	-0.80			81 Kr(n, γ) 82 Kr
⁸³ Kr	-0.76			83 Kr(n, γ) 84 Kr
⁸⁴ Kr	-0.49	-0.65	-0.76	
⁸⁶ Kr	0.84			85 Kr(n, γ) 86 Kr
	-0.30	-0.70		
	-0.34	-0.62	-0.90	
⁸⁷ Rb	-0.56	-0.65	-0.95	

Credit: Nishimura et al. 2017

ほかに sequence 中の重要な反応率: ⁷²Ge(n, γ), ⁷³Ge(n, γ), ⁸⁵Kr(n, γ), etc.

まとめ

恒星モデル

- ・星は冷えるので進化する
- ・つぶれるほど高温になる、縮退圧が効かなければ。

熱源としての反応

- ・ヘリウム、炭素、酸素燃焼期 が反応率不定性の大きな時期
- ・天体物理的不定性との切り分け??

化学進化に重要な反応

- ・今日は s-process についての反応率不定性
- ・ほかにも 超新星元素合成、nup-process、r-process、etc.

核反応率は「どんな世代・質量の恒星」にも分け隔てなく影響する。

