Experimental determination of the triple-alpha rate

KAWABATA Takahiro Department of Physics, Osaka University

Triple Alpha Reaction at High T

(M. Tsumura, Y. Takahashi, Y. Honda, et al.)

Triple alpha reaction at High T

were unknown.

 3α rate at high T is quite uncertain

because Γ_{γ} for the 2⁺₂ and 3⁻₁ states

First stars are massive and temperature reaches $T_9 \sim 5$.

Recent Update on the 2+2 state

γ -decay probability of the 3_1^- state

 Γ_{γ}/Γ of the 3_1^- state is very small, only its upper limit was reported

[D. Camberlin et.al., Phys. Rev. C 10, 2 (1974).]

Possible strength of isospin forbidden E1 strength

Experimental procedure

Using the inverse kinematic reaction H(12 C, 12 C p), recoil protons and scattered 12 C will be measured simultaneously instead of γ -rays.

Experimental Setup

The experiment was performed at the cyclotron facility in RCNP.

Gion Recoil proton counter

Gion = \underline{G} AGG based light <u>ion</u> counter telescope

	Density (g/cm ³)	ΔΕ/Ε (FWHM) @662 keV	Decay time (ns)	Light output (photon/Me V)
CsI(TI)	4.51	~6%	~1000	~56000
GAGG(Ce)	6.63	5-6%	88	65000

GAGG $(Gd_3Al_2Ga_3O_{12})$

APD \ Wrapped by 65-µm ESR film (3M)

Gion

✓ Double sided Si strip (16 x 32) detector
 ✓ 18 x 18 x 18 mm³ GAGG x 24

Target cell

0.5 mm-thick

Thin!!

Ortho-para convertor → Enhance thermal conductivity of the solid hydrogen.

[Y. Matsuda, M. Tsumura, T. Kawabata *et.al.,* J. Radioanal. Nucl. Chem. **305,** 897--901 (2015).]

Gamma Decay Probability r-decay probability is given by

$$\frac{\Gamma_{\gamma}}{\Gamma} = \frac{\# \text{ of } \gamma \text{ decay events}}{\# \text{ of singles events}} \times \frac{1}{\text{geo. eff.}}$$

Geometrical efficiency should be estimated by MC calculation.

	0+2	1+ ₁	3- ₁
Geo. Efficiency	0.117(2)	0.186(9)	0.229(3)
Γ_{γ}/Γ Previous	4.16(11)×10 ⁻⁴	2.21(7)×10 ⁻²	Unknown
Γ_r/Γ Present	4.3(8)×10 ⁻⁴	2.6(7)×10 ⁻²	1.3(8)×10 ⁻⁶

The present results are consistent with with the previous result on the O_{2}^{+} and 1_{1}^{+} states.

 Γ_{γ} for the 3⁻¹ state is larger than the previous upper limit [8.2 × 10⁻⁷ (2 σ)].

Triple Alpha Reaction Rate Triple reaction rate was calculated using the measured Γ_{γ}/γ **NACRE** <u>Present</u> 0.5 0_{2}^{+} 3-1 3-Present $\Gamma_r = 2 \text{ meV}$ $\Gamma_r = 44 \text{ meV}$ Zimmerman 2013 3_{1}^{-} $\Gamma_{3\alpha}/\Gamma_{3\alpha}(NACRE)$ NACRE $0_2^+ + 3_1^-$ (Direct only) 10 2^{+}_{2} $0_2^+ + 3_1$ (Direct only) + 2_2^+ Present $(0^+_2 + 3^-_1 + 2^+_2)$ 0 2.5 7.5 10 0 5 10 T₉ To The 3α rate is partially restored, and consistent with NACRE...

M. Tsumura, T. Kawabata et al., Phys. Lett. B 817, 136283 (2021). ¹⁵

Triple Alpha Reaction via the Hoyle state

(K. Sakanashi, S. Tsuji, et al.)

Hoyle state ~ the 0_2^+ state in 12° C

The Hoyle state is the most important state in the 3α reaction, but its width is recently controversial.

T. Kibédi et al., Phys. Rev. Lett. 125, 182701 (2020).

γ Detection by T. Kibédi et al.

New data reported by T. Kibédi et al. is much larger than the currently accepted value.

50% larger than the accepted value!!

gate: 7.65_n

& pr-pr

7

6

& 7.65_{sum}

Triple Alpha Reaction at High Density~ On going experiment with MAIKo+ ~

(T. Furuno, K. Himi, T. Doi et al.)

Triple Alpha Reaction Rate at high p

Only de-excitation by gamma decay was considered so far.

Time Inverse Reaction

Direct measurement of ${}^{12}C(Hoyle)(n,n'){}^{12}C(g.s.)$ is impossible. \rightarrow Time inverse reaction should be measured.

Recent Data from TAMU

Recently, Texas A&M group published new data.

Eye-Scan Analysis

Two track images were analyzed by human eyes.

C	ross	Sec	ction	Y N _{target}	収量 .単位i	面積あたりの ¹² C標的の量 (個]/cm ²
	σ (mb) = $\frac{1}{2}$	N _{target}	$\frac{Y}{N_{\text{beam}} \epsilon}$	N _{beam} … 入射中性子量 (個) <i>ε</i> … 検出・解析効率 (%)			
L En =	14 MeV 、10	0 hPa	isoC ₄ H ₁₀ (10	%) + H ₂ (9	0 %)	MAIKoテスト実験と比較し 収量は約10倍増加	して
		Y	N target (/cm ²)	N _{beam}	3	$\sigma({ m mb})$	
	Hoyle State	18	2.65 × 10 ¹⁹	$2.65 \times 10^{19} 6.5 \times 10^{8}$	48%	2.1 \pm 0.5 (stat.) \pm 0.1 (sys.)	
	3 ⁻ ₁ State	177			21%	49 \pm 5 (stat.) \pm 1 (sys.)	
先行	i研究との比喇	\$)					_
K	. Kondoらに。 K. Kondo et a	kる断面 al., J. Nuc	i積 Hoyl dl. sci. Tech. 45	<mark>e状態 8.9</mark> , 103 (2008)) mb 、	3 <mark>-1状態 69 mb</mark>	
N	IAIKoテスト実	ミ験	Hoyle 3 ₁ 状的	e <mark>状態</mark> 14 態 49 ±	\pm 6 (s 10 (stat	stat.) \pm 2 (sys.) mb t.) \pm 11 (sys.) mb	
迷	「面積の値カ	小さい	,				

→ 運動学条件やトリガー条件による信号事象棄却の可能性を調査中

Summary

- We are experimentally studying triple alpha reaction rates at various conditions.
 - At high temperature,
 - Rare gamma-decay mode of the 3⁻¹ state.
 - At normal temperature,
 - Puzzle about the radiative-decay width of the Hoyle state.
 - At high density,
 - Neutron inelastic scattering exciting the Hoyle state.