

Probing QCD phase structure and nuclear EOS in the RHIC Beam Energy Scan

"Equation of State of Dense Nuclear Matter at RIBF and FRIB", May 23-36, 2023

Takafumi Niida

。筑波大学 University of Tsukuba

Heavy-ion collisions and QCD phase diagram

T. Niida, Nuclear EOS at RIBF/FRIB 2023

From Lattice QCD:

- a smooth crossover near $\mu_{\rm B} \sim 0$ (<300 MeV)
- Pseudo-critical temperature $T_{PC} = 156.5$ MeV at $\mu_B = 0$ Y. Aoki et al., Nature 443, 675 (2006) A. Bazavov et al., PLB795 (2019) 15

High energy heavy-ion collisions

- Study properties of Quark-Gluon Plasma (QGP)
- Explore the QCD phase structure
 - Critical point, First-order phase transition, QGP turn-off

1600

STAR experiment at RHIC

Energy: $\sqrt{s_{NN}} = 7.7-200$ GeV for A+A Species: p+p, p(d,He)+Au, Cu+Cu, Cu+Au, A+Au, U+U...

T. Niida, Nuclear EOS at RIBF/FRIB 2023

- Full azimuth and large rapidity coverage
- Excellent particle identification —

RHIC Beam Energy Scan

Baryon Chemical Potential μ_{B}

- RHIC Beam Energy Scan (BES) program
 - Phase-I (BES-I) in 2010-2011 ($\sqrt{s_{NN}} = 7.7 39$ GeV)
 - Phase-II (BES-II) in 2019-2021 ($\sqrt{s_{NN}} = 3 27$ GeV) Collider mode for 7.7-27 GeV and Fixed-target mode for 3-13.7 GeV
- Main motivation
- Location of critical point
- Search for signatures of the 1st-order phase transition
- Onset of QGP formation

Time evolution of HIC

T. Niida, Nuclear EOS at RIBF/FRIB 2023

Chemical/Kinetic freeze-out temperatures

- T_{ch} is close to T_{PC} from LQCD and stays constant at $\sqrt{s_{NN}} >= 7.7$ GeV - Sudden change in T_{kin} around $\sqrt{s_{NN}} \sim 6-8$ GeV, where T_{kin} coincides with T_{ch}

T. Niida, Nuclear EOS at RIBF/FRIB 2023

Fixed-target mode can probe high baryon density region!

Collectivity (azimuthal anisotropy)

a eaction plane

 $E\frac{d^3N}{d^3p} = \frac{d^2N}{2\pi p_{\rm T}dp_{\rm T}dy} \left(1 + \sum_{n=1}^{\infty} 2\nu_n \cos(n\phi)\right)$

 ϕ : particle azimuthal angle relative to the nth-order event plane

T. Niida, Nuclear EOS at RIBF/FRIB 2023

Extensive study of anisotropic flow for particle collectivity

- Medium response to the initial geometry with fluctuations ($\varepsilon_{n} \propto v_{n}$).
- \gg Anisotropic flow: Fourier coefficient v_n of azimuthal distributions of final state particles
 - ▶ v₁: directed flow
 - ▸ v₂: elliptic flow
 - ▶ v₃: triangular flow
 - ▶ V4, V5, V6...

Fig. 2. Characteristic shapes of the deformed initial state density profile, corresponding to anisotropies of $\mathcal{E}_1, \mathcal{E}_2$. \mathcal{E}_3 , \mathcal{E}_4 and \mathcal{E}_5 (from left to right).

L. Yan, CPC42,042001(2018)

Directed flow V₁

- Directed flow: collective sideward motion of particles
 - Proposed as a sensitive probe to the 1st-order phase transition; "wiggle structure" or "anti-flow"
 - Characteristic rapidity dependence (" \sim " shape) at mid- η due to: initial source tilt with expansion, density asymmetry, baryon stopping
 - Contribution from the tilt to v_1^{odd} : ~2/3 at RHIC, ~1/3 at the LHC
 - Extensive study for various particle species and collision energy so far; none of models can describe the data simultaneously

T. Niida, Nuclear EOS at RIBF/FRIB 2023

L.P. Csernai and D. Rohrich, PLB458(1999)454 J. Brachmann et al., PRC61, 024909 (2000)

P. Bozek and I. Wyskiel, PRC81, 054902 (2010) U. Heinz and P. Kolb, J.Phys.G30;S1229 (2004) R. Snellings et al., PRL84, 2803 (2000)

STAR, PRC98, 014915 (2018)

softening, $\sim 100\%$.

(b) tilted source + asymmetric density gradient

Cartoon from "STAR, PRC98, 014915 (2018)"

Directed flow from BES

dv₁/dy|_{y=0} vs sqrt(s)

10

Directed flow from BES

Coalescence sum rule

- "produced" : Holds at $\sqrt{s_{NN}}$ down to 11.5 GeV, with a minimum at 14.5 GeV

T. Niida, Nuclear EOS at RIBF/FRIB 2023

• net-particles : dominated by "produced" quarks at high $\sqrt{s_{NN}}$, while by "transported" ones at low $\sqrt{s_{NN}}$

11

Energy dependence of elliptic flow v₂

BES data follow the global trend. The sign of v_2 changes twice with colliding beam energy.

T. Niida, Nuclear EOS at RIBF/FRIB 2023

Hadron Number of Constituent Quark (NCQ) scaling QGP STAR, PRC88, 014902 (2013) STAR, PLB827(2022)137003 11.5 GeV 19.6 GeV 7.7 GeV 0.1 Au+Au, 0-80% $\land \land \circ \mathsf{K}^{+}$ 54.4 (GeV) Au+Au Collisions (10-40%) 27 $\Delta \Xi \Phi K_s^0$ η-sub EP 0.08 - 200 **□**Ω **▼** φ 0.05 0.06 v_2/n_q 0.04 - 27 GeV 0.1 39 GeV 62.4 GeV 0.02 (a) Positive particle (b) Negative particle

NCQ scaling holds well at $\sqrt{s_{NN}} \gtrsim 7.7$ GeV indicating partonic collectivity, while the scaling doesn't work at 3 GeV where baryonic interaction is dominant.

-0.02

0

0.2

0.4

0.6

0.8

0

 $(m_{T} - m_{0})/n_{n} (GeV/c^{2})$

T. Niida, Nuclear EOS at RIBF/FRIB 2023

 π^+ : Δ resonance K+: associated production of Λ p: transported protons

0.2

0.4

0.6

Flow at 3 GeV, compared to models

Transport models with baryonic mean-field (JAM, UrQMD) qualitatively describes the data, except K+ v_2 (and πv_1 , Λv_2).

JAM: JET AA Microscopic Transportation Model UrQMD: Ultra-relativistic Quantum Molecular Dynamics

Y. Nara et al., PRC61, 0249021 (1999)

S. Bass et al., Prog.Part.Nucl.Phys.41, 255 (1998)

Femtoscopy

- R_{long}: source radius along the beam axis
- Rout : transverse radius + emission duration, parallel to pair momentum
- R_{side}: transverse radius, orthogonal to R_{long} and R_{out}

 \gg R_{out}/R_{side}, sensitive to the emission duration, peaks around 20 GeV. Indication of EOS softest point? Model study shows sensitivity of HBT measurements to the EOS

▶ New data from BES-II+FXT will fill in 3-27 GeV with better precision

Femtoscopy

$$C(k^*) = \frac{P(\vec{p_1}, \vec{p_2})}{P(\vec{p_1})P(\vec{p_2})}$$
$$= \int S(\vec{r}) |\Psi(k^*, \vec{r})|^2 d\vec{r}$$

<u>"HBT" radii (Gaussian source size)</u>

- R_{long}: source radius along the beam axis
- Rout : transverse radius + emission duration, parallel to pair momentum
- R_{side}: transverse radius, orthogonal to R_{long} and R_{out}
 - when increasing collision energy

Pion emission region turns from "oblate" to "prolate" shape around 4.5 GeV

• Evolution from stopping at lower energies to longitudinally boost-invariance at higher energies

CP search with net-proton fluctuations

Search for the signal of crossover PT

T. Niida, Nuclear EOS at RIBF/FRIB 2023

over at small μ_B but no experimental evidence so far negative for crossover PT

 \blacktriangleright At 200 GeV, the sign of C₆/C₂ seems to become negative when going to central collisions

Global polarization of hyperons

<u>"global polarization"</u>

Initial orbital angular momentum L, partially transferred to the medium, polarize particles' spin globally.

- Z.-T. Liang and X.-N. Wang, PRL94, 102301 (2005)
- S. Voloshin, nucl-th/0410089 (2004)
- F. Becattini, F. Piccinini, and J. Rizzo, PRC77, 024906 (2008)

T. Niida, Nuclear EOS at RIBF/FRIB 2023

STAR, Nature 548, 62 (2017)

Observation of Λ global polarization indicates the creation of the thermal vorticity, which is found to be the most vortical fluid ($\omega \sim 10^{21}$ 1/s)

- Recent measurements with $\Xi(\text{spin-1/2})$ and $\Omega(\text{spin-3/2})$ supports the vorticity picture

Energy dependence of A global polarization

Continuous increase down to $\sqrt{s_{\text{NN}}} \sim 2.5~GeV$

- Predicted to have the maximum around $\sqrt{s_{NN}} = 3 \text{ GeV}$
- Slope seems to change around √s_{NN} = 7-10 GeV, relying on model calculations (need data)
- Little but slight dependence on EOS at low energy

New data will come from STAR BES-II (3-27 GeV)

Summary

Beam energy scan program at RHIC-STAR

- GeV, e.g. breaking of NCQ scaling
- data are still not understood well by models.
- consistent with the expectation from CP but not conclusive yet

BES-II data taking just finished and now data analyses have started. Stay tuned for more precise measurements!

T. Niida, Nuclear EOS at RIBF/FRIB 2023

• Signatures of QGP formation observed at high energy are gone around $\sqrt{s_{NN}} = 3-10$

 Different observables such as flow, HBT, extracted temperatures show non-monotonic energy dependence, possibly related to the first-order phase transition. Some of the

Net-proton fluctuations show non-monotonic trend over the energy, qualitatively

rk-gluon Plasma in Non-central A+A

rticles, in an polarized high, energy hadronepends on x. $\omega_y = \frac{1}{2} (\nabla \times v)_y \approx -\frac{1}{2} \frac{\partial v_z}{\partial x}$

<u>What is MathJax?</u>)

'arxiv.org/abs/nucl-th/0410079

http://arxiv.org/abs/nucl-th/0410089

tum of the iscuss a)mentum. I isions.

Particles are "globally" polarized along L mentum of the Z.-T. Liang and X.-N. Wang, PRL94, 102301 (2005) S. Voloshin, nucl-th/0410089 (2004) F. Becattine Finitiand J. Rizzo, PRC77, 024906 (2008) collisions.

