Neutron detection simulations in low energy nuclear physics - GEANT4+SCINFUL -

Jeonghyeok Park Korea University

Equation of States and Symmetry Energy

- Equation of state :
 - $\varepsilon(\rho, \delta) = \varepsilon(\rho, \delta = 0) + E_{sym}(\rho)\delta^2 + O(\delta^4)$
 - where $\delta = \frac{\rho_n \rho_p}{\rho_n + \rho_p}$, isospin asymmetry
- Symmetry energy, $E_{sym}(\rho)$, is energy difference between the pure neutron matter and isospin symmetric matter.
- Example: Binding energy of nuclear matter

•
$$B(A, Z) = a_{vol}A - a_{sur}A^{2/3} - a_{coul}\frac{Z(Z-1)}{A^{1/3}} - a_{sym}\frac{(N-Z)^2}{A} \pm \delta_{pair}$$

•
$$\varepsilon(\rho, \delta)A = Zm_p + Nm_n - B(A, Z)$$

Equation of States and Symmetry Energy

 $\varepsilon(\rho,\delta) = \varepsilon(\rho,\delta=0) + \frac{E_{sym}(\rho)\delta^2}{E_{sym}(\rho)\delta^2} + \mathcal{O}(\delta^4)$

- Symmetry potential for neutron (proton) having repulsive (attractive) behavior with different forms of F_n.
- The opposite sign of the potential will affect differently the reaction dynamics of neutrons and protons.
- One of observables in heavy ion collision experiment to extract Symmetry energy is neutron to proton yield ratio.

Experimental overview

E14030 & E15190

- Feb 8 ~ Mar 25 @ NSCL for the study of EOS
- ^{40,48}Ca beam (56, 140 AMeV) and ^{58,64}Ni, ^{112,124}Sn target were used
- HiRA(High Resolution Array)
 - Charged particle detection
 - Well established detector (~100% eff)
- v+LANA(Large Area Neutron Array)
 - Veto wall to reject charged particle (New)
 - Liquid organic scintillator / NE213
 - 25 bars / 200 x 7.62 x 6.35 cm³
 - Detection efficiency not yet determined

Neutron detectors

Principle of Neutron Detector

- Neutron doesn't produce any light by itself. Light is produced from charged particles as a result of scattering of n from other nucleus.
- Organic scintillators consist mainly ¹H and ¹²C.
- Main component of light is from elastic scattering of n from ¹H.

 CH_3

NE213 (Xylene)

CH3

- Inelastic scattering of n from ¹²C also produces charged ions (p, d, t, ³He, ⁴He) which produce light.
- Neutron detection efficiency is much lower than 100%. It is also not well established.
- Extracting neutron detection efficiency from simulation is the main focus of this talk.

Figure 1. Schematic illustration of neutron detection. This figure is cited from Ref. 1

Neutron Simulations Codes

Neutron simulation lists

	SCINFUL	SCINFUL-QMD	PHITS (SCINFUL mode)	GEANT4 (SCINFUL mode)	MENATE_R
Elastic ¹ H Elastic ¹² C	Implemented	Implemented	Implemented	Implemented	Implemented
Inelastic ¹² C	9 channels	9 channels	9 channels	9 channels	6 channels
Energy Validity	En < 110 MeV En < 80 MeV	En < 3 GeV En < 800 MeV	En < 3 GeV	En < 3 GeV	En < 150 MeV
Geometry	Cylinder fixed	Cylinder fixed	Flexible One PMT	Flexible Two or more PMTs.	Flexible Two or more PMTs.
Physics models	SCINFUL	SCINFUL JQMD	SCINFUL JQMD, INCL	SCINFUL JQMD, cascade models	MENATE_R

SCINFUL-QMD

Cross-section from n-induced reactions

- SCINFUL (up to 80 MeV / extended 150 MeV)
 - Total 11 initial channels + sequential decays
 - Elastic scattering
 - n + ¹H / n + ¹²C
 - Inelastic scattering of n+12C (9 channels) 2
 - Reaction cross-section (XS) up to 110 MeV.
 - Treats constant XS up to 150 MeV.
 - Possible sequential decays from the initial reaction channel
- n+¹²C -> d+n'+¹⁰B (example)
 - I. $n+{}^{12}C \rightarrow {}^{13}C$ (Compound)
 - II. ${}^{13}C \rightarrow d + {}^{11}B^*$ (Excited / ${}^{12}C(n,X)$ channel)
 - III. ¹¹B* -> $n+^{10}B$ (Ground state) OR $n+^{10}B^*$
 - IV. ¹⁰B* -> γ +¹⁰B (If possible) OR further decay

 $- {}^{1}H(n,n){}^{1}H - \cdots {}^{12}C(n,n){}^{12}C - {}^{12}C(n,n\gamma){}^{12}C - \cdots {}^{12}C(n,p){}^{12}B$ \cdots ¹²C(n,d)¹¹B \cdots ¹²C(n,t)¹⁰B \cdots ¹²C(n,³He)¹⁰Be \cdots ¹²C(n, α)⁹Be $- {}^{12}C(n,n'3\alpha) - {}^{12}C(n,np)^{11}B - {}^{12}C(n,2n)^{11}C$ $\times n+{}^{12}C$ total 10 _⋿ SCINFUL 0 **10**⁻¹ **10**⁻² 10^{-3} 10 10 E_n (MeV) 110 MeV

SCINFUL-QMD

Cross-section from n-induced reactions

- JQMD (En > 150 MeV)
 - One of the Quantum Molecular Dynamics (QMD) developed by Japan Atomic Energy Research Institute (JAERI).
 - n + ¹H / n + ¹²C
 - Reaction probability from 2 total crosssection.
 - QMD reaction stops at 100 fm/c.
 - After 100 fm/c, highly excited nucleus will decay to light ions (p, d, t, ³He, ⁴He) by Statistical Decay Model (SDM).

 $- {}^{1}H(n,n){}^{1}H - \cdots {}^{12}C(n,n){}^{12}C - {}^{12}C(n,n\gamma){}^{12}C - \cdots {}^{12}C(n,p){}^{12}B$ $^{12}C(n,d)^{11}B$ $^{12}C(n,t)^{10}B$ $^{12}C(n,^{3}He)^{10}Be$ $^{12}C(n,\alpha)^{9}Be$ $-1^{12}C(n,n'3\alpha) - 1^{12}C(n,np)^{11}B - 1^{12}C(n,2n)^{11}C$ × n+¹²C total
 10 ⊨ (q) SCINFUL JQMD b 10⁻¹ 10⁻² \star n+¹H total ⋆ n+¹²C total 10^{-3} 10 10 E_n (MeV) 110 MeV

Light output function

Light output in NE213

- Charged particles traveling in the detector make different light outputs (MeV_{ee}) depending on the particle type.
- Light outputs for different particles can be described as a function of kinetic energy by the empirical formula described in SCINFUL-QMD.
 - Parameters fitted from experimental data.
 - The empirical formula is used in SCINFUL-QMD above the minimum energy for each particles. (E_k > E_{min})
 - Below the minimal energy, SCINFUL-QMD converts kinetic energy to light output from the database by Verbinski data. (E_k < E_{min})

$$L = a_1 E - a_2 \{ 1.0 - \exp(-a_3 E) \},$$

Table 2. Coefficients in Equation (1) for proton, deuteron, triton, ³He ion, and alpha particle with the minimum energy used in the equation.

Particle	Coefficient			Minimum energy	
	<i>a</i> ₁	<i>a</i> ₂	<i>a</i> ₃	(MeV)	
Proton	0.81	2.43	0.29	25	
Deuteron	0.74	3.45	0.20	10	
Triton	0.72	7.19	0.07	10	
³ He ion	0.54	3.97	0.20	5	
Alpha particle	0.51	6.42	0.08	5	

PHITS SCINFUL mode doi : 10.1080/00223131.2021.2019622

Response function

Neutron response function of organic scintillator

Response function

Cylindrical detector (SCINFUL-QMD)

- Response function is the light output distributions for the average neutron.
 - Light output distribution normalized by # of incident neutrons
 - Response functions for the same cylindrical geometry (Diameter : 12.7 cm & Thickness : 12.7 cm) using SCINFUL-GEANT4 are compared to each other.
- GEANT4 has another model, the Liège Intranuclear Casecade, INCL.
 - The results from INCL++ are also compared. (En > 150 MeV)
 - ~10² times faster than QMD.

Response function

Cylindrical detector / Compare to experimental data

- Comparison between experimental data and simul ation using different physics model options in GEA NT4 for the cylindrical detector.
 - Diameter : 12.7 cm
 - Thickness : 12.7 cm
- The experimental data taken from
 - doi.org/10.1080/18811248.2006.9711153
- SCINFUL-GEANT4 results
 - INCL seems much closer to JQMD and better agreement at En = 200 MeV.
 - Poor agreements for Bertini, BIC, G4QMD.
 - INCL (Bertini and BIC) : ~10² times faster than QMD

Detection efficiency

Cylindrical detector / Compare to experimental data

- The detection efficiency comparison between experimental data and SCINFUL-GEANT4 for the cylindric al detector.
 - Diameter : 12.7 cm
 - Thickness : 12.7 cm
 - Threshold : 1.07 (top), 4.33 MeV_{ee} (bottom)
- A jump at 150 MeV of SCINFUL-QMD → switching model from SCINFUL to JQMD at 150 MeV.
- The experimental data taken from
 - doi.org/10.1080/00223131.2021.2019622

SCINFUL-QMD

Cross-section

 SCINFUL-GEANT4 : mixture of models between 80 – 110 MeV

Detection efficiency

Cylindrical detector / Compare to experimental data

- The detection efficiency comparison between experimental data and SCINFUL-GEANT4 for the cylindric al detector.
 - Diameter : 12.7 cm
 - Thickness : 12.7 cm
 - Threshold : 1.07 (top), 4.33 MeV_{ee} (bottom)
- A jump at 150 MeV of SCINFUL-QMD → switching model from SCINFUL to JQMD at 150 MeV.
- The experimental data taken from
 - doi.org/10.1080/00223131.2021.2019622

Response function

Large Area Neutron Array (LANA) / Compare to experimental data

- The comparison for the response functions from experimental data and the simulations for LANA detector configurations.
 - No experimental efficiency determinations only the shape of the response functions.
 - Normalized by integration from 3 MeVee to infinity.
 - The results from SCINFUL-GEANT4 has been folded by resolution formula,

•
$$\frac{dL}{L} = \sqrt{A^2 + \frac{B^2}{L} + \frac{C^2}{L^2}}$$
 FWHM

Mainly affect the high energy tails.

Detection efficiency

LANA

- Detection efficiency of LANA calculated by SCINFUL-GEANT4
 - SCINFUL / En < 110 MeV</p>
 - INCL / En > 80 MeV
- Absence of data points because of uncertainty for the number of incident neutrons i.e. no efficiency data.

Event Generator mode

Two event generators: IQMD and JQMD

- To validate SCINFUL-GEANT4, two event generators are poerformed in GEANT4.
 - ¹⁹⁷Au + ¹⁹⁷Au @ 250 AMeV / IQMD
 - High neutron multiplicity
 - ⁴⁸Ca + ⁶⁴Ni @ 140 AMeV / JQMD
 - Experiment system
 - Primary : neutrons from event generators in LANA coverage
 - Detected : neutrons interacted with LANA
 - Corrected : Detected / efficiency

Summary

- A new simulation code, SCINFUL-GEANT4, has been developed to simulate neutron detection efficiency. We adopt:
 - Cross-section of SCINFUL / JQMD
 - Physics model of SCINFUL / JQMD
- GEANT4 can offer other cascade models, BIC, Bertini, INCL for the high energy of neutron reaction.
 - ~100 times faster than JQMD.
 - INCL model is the best option among the cascade models.
- SCINFUL-GEANT4 was compared to SCINFUL-QMD and experimental data.
 - Perfect agreements with SCINFUL model (En < 80 MeV).
 - Good agreements with INCL model (En > 100 MeV).
- Estimated neutron detection efficiency of LANA.
 - 10 % ~ 20 MeV / 2 % ~ 300 MeV.
- Physics Event Generator was performed to validate the simulation.
- Future: Apply neutron detection efficiency of LANA to neutron spectra → n/p ratios → symmetry energy constraints

Acknowledgement

backups?

Probing the symmetry energy by nuclear collisions

 $E/A(\rho,\delta) = E/A(\rho,0) + \frac{\delta^2 \cdot S(\rho)}{\delta}; \ \delta = (\rho_n - \rho_p)/(\rho_n + \rho_p) = (N-Z)/A$

- To maximize sensitivity, reduc e systematic errors:
 - Vary isospin of detected particle
 - Vary isospin asymmetry $\delta = (N-Z)/A$ of reaction.
- Low densities ($\rho < \rho_0$):
 - Neutron/proton spectra and flow s
 - Isospin diffusion
- High densities $(\rho \approx 2\rho_0)$:
 - Neutron/proton spectra and flow s
 - π^+ vs. π^- production

Neutron Simulation (SCINFUL-GEANT4)

Why SCINFUL?

- MENATE_R
 - Based on GEANT4
 - Advanced with geometry
- TOTEFF
 - Based on FORTRAN code
 - Negative efficiency above 100 MeV of neutron
- SCINFUL-QMD
 - Based on FORTRAN code
 - Limitation with geometry (cyl)
- SCINFUL-GEANT4
 - Incorporated SCINFUL-QMD
 - Flexible to change geometry

Equation of States and Symmetry Energy

- Expansion of symmetry energy around the saturation density $\rho_0~\approx 0.16~fm^{-3}$

•
$$E_{sym}(\rho) = S_0 + \frac{L}{3} \left(\frac{\rho - \rho_0}{\rho_0} \right) + \frac{K_{sym}}{18} \left(\frac{\rho - \rho_0}{\rho_0} \right)^2$$

• $L = \frac{3}{\rho_0} P_{sym} = 3\rho_0 \left. \frac{\partial E_{sym}(\rho)}{\partial \rho} \right|_{\rho = \rho_0}$ (slope)
• $K_{sym} = 9\rho_0^2 \left. \frac{\partial^2 E_{sym}(\rho)}{\partial \rho^2} \right|_{\rho = \rho_0}$ (curvature)

- Constraints on symmetry energy slope parameter L and its magnitude S₀ from several experiments.
 - *S*₀ : 28 ~ 32 MeV
 - *L* : 40 ~ 60 MeV

Effective mass splitting

- In neutron-rich matter, many theories predict that the neutron and proton effective masses become different.
 - m_n* < m_p* at SLy4
 - m_n* > m_p* at SkM*
- Effective mass splitting strongly influences to the ratio of neutron over proton and other probes of the density dependence of symmetry energy.

Name	S_0 (MeV)	L (MeV)	m_n^*/m_n	m_p^*/m_p
SkM*	30	46	0.82	0.76
SLy4	32	46	0.68	0.71
Gs	31	93	0.81	0.76
SkI2	33	104	0.66	0.70

Y. Zhang, M. B. Tsang, Z.Li, and H. Liu / Phys. Lett. B 732, 186 (2014)

Neutron Simulations Codes

Neutron simulation lists

	SCINFUL	SCINFUL-QMD	PHITS (SCINFUL mode)	SCINFUL-GEANT4	MENATE_R
Elastic ¹ H Elastic ¹² C	Ο	Ο	Ο	Ο	Ο
Inelastic ¹² C	9 channels	9 channels	9 channels	9 channels	6 channels
Energy Valid	En < 80 MeV	En < 3 GeV En < 800 MeV	En < 3 GeV	En < 3 GeV	En < 150 MeV
Geometry	Cylinder fixed	Cylinder fixed	Flexible One PMT	Flexible Two or more PMTs.	Flexible Two or more PMTs.
Physics models	SCINFUL	SCINFUL JQMD	SCINFUL JQMD, INCL	SCINFUL JQMD, INCL++, BIC	MENATE_R
Transition from lo w to high n energy	N/A	En = 150 (MeV)	80 < En < 110 (MeV)	80 < En < 110 (MeV)	N/A

Detection efficiency

LANA

- Detection efficiency of LANA calculated by SCINFUL-GEANT4
 - SCINFUL / En < 110 MeV</p>
 - INCL / En > 80 MeV
- Absence of data points because of uncertainty for the number of incident neutrons i.e. no efficiency data.

