

Summary of TPC2023 Workshop at Texas A&M

Curtis Hunt

This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University. Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.

Outline

- TPC Basics
 - Basics
 - Gas gain detectors
 - GET
- TPC Detectors
 - SRIT
 - AT-TPC
 - And more ...
- Major Discussions
 - New TPC for fast beams at FRIB
 - Electronics
 - Hardware
 - Software
- Discussions Summary

Time Projection Chamber (TPC) Basics

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

TPCs - Basics

Particle tracking

- Particles moving through the active volume ionize the gas
- Electrons drift in applied electric field toward anode plane
 » Gas gain detector amplifies signal and reads out charge
 » More anode segmentation give more position resolution
- Active Target
 - Active Target setups use the detector gas as the target
 - Reactions occur within the gas for good event reconstruction
 - Thick Target Inverse Kinematics (TTIK) method allows for measuring energy over a large energy range with a single beam energy
 - Some limitations on the gas

TPCs – Gas Gain Detectors

- Wires SπRIT
 - Charge attracts to wires; images read by redout anode
- Micromegas AT-TPC, TexAT,
 - Micromesh on top of readout anode; e⁻ avalanche created between planes
- GEM AT-TPC, TexAT,
 - Channels electrons accelerated through holes; amplification from avalanches between sides of GEM

Ε

TPCs - GET

Detector

Generic Electronics for TPCs (GET)

• AGET chips

- » 64 data channels + 4 FPN channels
- Fixed Pattern Noise (FPN) channels measure the baseline due to electronics
 Preamplification and Shaping
- AsAd (ASIC and ADC) boards
 » 4 AGET chips per board
 » Digitizes signal from the AGET
- CoBo (Concentration Board) Module
 » Up to 4 AsAd per CoBo
- MuTAnT (Multiplicity, Trigger and Time)
 - » Manages the trigger for the connected CoBos

More on this topic later!!

AsAd

Data Acquisition & Storage MICROTCA Chassis

MCH MuTanT

CoBo

Ethernet

E.C. Pollacco et al. NIMA 887 (2018) 81-93

TPC Detectors

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

SπRIT

William Lynch "Results from $S\pi RIT$ -Time Projection Chamber experiments" $p_T (MeV/c)$ Tadaaki Isobe "The SPiRIT TPC for heavy ion collision experiments at RIKEN-RIBF"

AT-TPC - Overview

- AT-TPC (Active Target Time Projection Chamber)
 - At FRIB
- 1000 mm long x 250 mm radius cylindrical active volume
- 10240 micromegas pads
 - Perpendicular to beam direction
 - Highly segmented inner region
 - Option for use with GEMs
 - New pad plane allows AT-TPC to be used in reverse
- Cylindrical design allows for use in magnetic field
 - SOLARIS
 - HELIOS

Future upgrades and improvements of AT-TPC

- New CoBo board (ZCoBo)
 - First 2 prototypes received, ongoing preliminary tests
 - SoM from Trenz arriving this month first full tests
 - Firmware from U. Of Warsaw via NDA with MSU
- Inner beam region tube with gas recovery system
 - Use of expensive gases such as ³He
 - Recovery system built and tested, inner tube being designed
- Heavy recoil detectors at small angles
 - Transmission mode: beam injected through hole in pad plane
 - Pair of DSSSD (10x10 cm2) placed outside exit flange
 - Detectors ordered, design started

Daniel Bazin "The Active Target Time Projection Chamber"

Charge exchange study in AT-TPC

- ¹⁴O(d,²He)
- AT-TPC used in the configuration where beam comes in through pad plane
- The S800 Spectrometer is Used for Time Verification and Obtaining Signals
- B(GT) for 3.95 MeV 1+ state in agreement with decay and ¹⁴C(p,n) results for states > 10 MeV.

Zarif Mubassir Rahman "Using AT-TPC to Study $(d, 2H_e^0)$ Reaction in Inverse Kinematics to Study Unstable Nuclei"

Analysis of 11Be excited states via the 10Be(d,p) reaction

- ¹⁰Be(d,p) experiment performed at NSCL during summer 2021 with AT-TPC in SOLARIS solenoid
 - Data analysis ongoing
- Detailed issues and solution for crosstalk in GET

Zach Serikow "Analysis of 11Be excited states via the 10Be(d,p) reaction"

Fission in AT-TPC

- Probe of nuclear structure in unexpected region of asymmetry in mass yields near ¹⁸⁰Hg and ¹⁹⁸Pb
- Challenges Solved
 - Beam particle identification
 » HEavy ISotope Tagger (HEIST)
 - Identifying Fission Events
 » Use a combination of algorithmic and machine learning methods
 - Space Charge
 - » Solved Longevin equation to correct fission tracks
 - Signal Processing
 - » Deconvolution for accurate dQ/dt (related to dE/dx)

Curtis Hunt "Studying Fission near ¹⁹⁸Pb with AT-TPC at FRIB"

TexAT/TeBAT

- TexAT TPC TEXas Active Target Time Projection Chamber
 - Cyclotron Institute at Texas A&M
- 224 (beam) x 245 x 130 (height) mm sensitive volume
- Segmented Micromegas, 1024 channels, pos.
 res. ≈ 1.5 mm in beam direction
- GEMs provide additional gain. Low dE/dx particle tracks possible
- Ancillary Si+Csl telescope wall
- New TexNeut neutron detector for (p,n)
- New TeBAT with Birmingham University will use resistive Micromegas

TexAT Experiments Overview

- Nuclear structure/exotic nuclei
 - ⁸B(p,p) ♦
 - ¹⁰C(α,α)
 - ¹⁴O(α,α)
 - ¹²Be(p,p) at TRIUMF ♦
 - ⁹Li(p,p) ♦
 - ⁹Li(p,n) TexNeut
- Direct fusion measurement
 ⁸B+⁴⁰Ar
- Trojan Horse Method studies

 ²⁰Ne,α)¹⁶O+α
 - Published; Analysis completed

- Nuclear astro (α,p) studies
 - ¹⁴O(α ,p) at RIKEN (CRIB)
- Transfer reactions
 - ^{12/13}B(d, ³He)
 - ¹H(⁶He, t^{*}) ♦
- β-delayed particle decay
 - (¹²N,β3α) ♦
 - (¹³O,β3αp)
- Neutron-induced measurements
 - ¹²C(n,n₂)3^α ♦
 - ${}^{12}C(n, \alpha_0), {}^{16}O(n, \alpha_0) \blacklozenge$

Jack Bishop "TexAT and TeBAT: a multitude of experiments"

GADGET II

GADGET II

- Upgraded Proton Detector to TPC operation to measure ${}^{20}Mg(\beta p \alpha){}^{15}O$ through 4.03-MeV ${}^{15}O(\alpha,\gamma){}^{19}Ne$ resonance to determine Γ_{α}/Γ .
- Segmented Micromegas pad plane
- For use is DEGAi for gamma ray detection
- Machine learning used on 2D plots of the 3D+charge information
- ATTPCROOT for simulation
- Recent ²⁰Mg(βpα)¹⁵O experiment completed at FRIB

TPC surrounded by the DEcay Germanium Array initiator (DEGAi)

Chris Wrede "Development of GADGET II"

Machine Learning with TPCs

Warsaw TPC

- Active volume
 - » 33 x 20 cm2 (readout) x 20 cm (drift)
- Charge amplification
 - » Gas Electron Multiplier (GEM) structures
 - » Readout with planar, 3-coordinate, redundant strip arrays, ~1000 channels

- 12C(γ,3α)
 - Many other types of events occurred
 - Used Machine learning to filter out types of events down to 3 prong events
 - Lots of hand labelling to obtain sufficient samples

Robin Smith "Machine Learning TPC analysis for nuclear structure studies using gamma-beams"

FissionTPC & SREFT Learning From The Past

NIFFTE FissionTPC @ LLNL

- 15+ years old!
- Old! Lucas Snyder "The NIFFTE fission Time Projection Chamber"
- Micromegas, 5952 hexagonal pads
 Off the shelf electronics component
- Off the shelf electronics components
 » Still took development time
- Did not handle being bombarded with neutrons well
- Heat was a major problem
- Difficult to work with

SREFT @ LANL

- Rapid prototyping with 3D printing
- Easily removable cathode
- Only 180 channels with GEMs and strip anode
- Off the shelf electronics modules
- More convenient gas handling systems
- Simple, but effective Christopher Prokop "SREFT (Spatially Resolved Fission Tracker)"

CENS/IBS

- ATOM-X: New Active Target TPC at CENS/IBS
- Active area: 244(X) x 185(Y) x 289(Z) mm3
 - Silicon and CsI detectors wall for total energy of particles
 - » Position sensitive strips on Si. Detector (X6) using resistive layer
 Sunghoon(Tony) Ahn "TexAT_v2 and AToM-X development at CENS"
 - 5650 channels total

- LAMPS: Large Acceptance Multi Purpose Spectrometer
- Made for HIC and EoS studies at IRIS at CENS
- 3 layer GEMs
 - 21,584 channels in total

Inner field cage shields space charge

CheongSoo Lee "Design and Fabrication of LAMPS TPC" HyoSang Lee "R&D and test of LAMPS TPC"

Others

- DAPPER TPC: TPC for use with DAPPER at Cyclotron Institute (TAMU)
- Small TPC in the DAPPER γ-ray detector for improved proton tracking

A.B. McIntosh "DAPPER TPC"

- ND-Cube: TPC at Notre Dame
- Jield cage Hexagonal Micromegas plane with 2-layer GEM
 - Developed method of using Ne gas with small

anode readout% of He₂

Tan Ahn *"Using Neon for Active-Target TPCs: Development Using the ND-Cube"*

MUSIC: Argonne National Lab

 Several published and in progress results from MUSIC in Active Target mode

C. Fougères "Capture reactions with the active target MUSIC"

Main Discussions

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

New TPC at FRIB

- The SπRIT TPC could be modified to fit into the High Rigidity Spectrometer or a similar detector could be built with modern improvements
- Needs to fit in 60 cm gap of D1
- Can be coupled with LANA or upgraded neutron walls
- Fitting the TPC in at HRS:
 - Moving GET electronics off of the top and reducing support structure (replace GET with something else)
 - Requires R&D for preamps
 - Reduction of a bit more than 10 cm
 - Small reduction of the drift cage

Kyle W. Brown "Outlook for an Equation of State TPC with the High Rigidity Spectrometer"

New TPC at FRIB

- A new AT-TPC style detector for fast beams at FRIB
- More portable solenoid required
 - Desired use at many locations of FRIB
- Include existing AT-TPC modifications
- Add new improvements
 - Inner beam region tube to shield from space charge
 - Option thin cathode for additional downstream detectors
 - Option for internal solid target (for EoS studies, for example)

Zbigniew Chajęcki "An active target time projection chamber for fast rare isotope beam experiments"

Electronics - GET

• GET

- No more MUTANTs
 - » Only about a dozen around the world between USA, Japan, and Korea
 - » Possibility of an electronics pool to ensure availability of electronics for the short term
 - New Electronics system > 5 years to develop
- New chips give new capabilities
 » STAGE
 - Longer shaping time
 - Good for Si and Csl detectors
 - » Streaming chips
 - SAMPA
 - SALSA

• ZCoBo

- » Next generation CoBo
- » More accessible components
- » Trigger and Timing without MUTANT
- » Backward compatible with MUTANT

Electronics – The Future

Commercial

- CAEN FERS system
 - » Could be made compatible with existing and future chips
 - » Current configuration is not usable in magnetic fields
 - »~100 USD/channel
 - » Timeline for development is unknown
- Commercial is expensive but has longevity and support that specialized systems such as GET lack
- New GET like system
 - Cost would be lower (though some cost hidden)
 - Long term sustainability is a concern

■ SBIR

- Potential for a startup with government funding to handle development and production
- Possible alternative to the commercial route to have long term support but cheaper

Hardware

- New CoBo boards difficult to obtain
 - FPGA chips no longer available
 - ZCoBo could alleviate this
 » Plan to make IP available to expand production options
- AsAd boards currently only manufactured in one place
 - Possibility to IP to be released so more options can be explored independently by members of the TPC community
- Gas gain detectors currently primarily produced at CERN
 - Investigate more places for manufacture
 - Need a lab to take lead
 - » Need sufficient buy in for new manufacturing initiative

Need more options for obtaining hardware and manufacture within the TPC community

Software - DAQ

FRIBDAQ (formerly NSCLDAQ)

• Containers

Giordano Cerizza *"From NSCLDAQ to FRIBDAQ: New Solutions for Data Acquisition and Analysis"*

- » A container consists of apps, libraries, binaries, and config files ("userland") ALL bundled in one package.
- » It includes only what is needed.
- » One machine can run multiple
- » containerized applications.
- » Essentially no overhead.
- » Instant booting
- » Modularity (micro-service approach).
- Notable interest in moving away from Narval DAQ for GET systems from many GET users in the community

Software - Analysis

- Many analysis software packages being developed
 SPIRITROOT (SπRIT)
 - ATTPCROOT (ATTPĆ, GADGET II)
 - LILAK (ATOM-X)
 - And others (TexAT/TeBAT, etc)
- Lots of reinventing the wheel for methods
 - Pulse Shape Analysis
 - Track fitting
 - Etc.
- Interest in establishing some community database of methods
 - A website (or wiki) perhaps
 - Browse solutions from others in the community

Discussions Summary

New TPC at FRIB

- Significant interest in an AT-TPC like detector for fast beams at FRIB
 - » Mobility and modularity is key
 - » Avoids stretching AT-TPC too thin for experiments
- Electronics
 - GET approaching end of life » International electronics pool could get us by until a new system is developed
 - A new electronics solutions must be developed
 - » GET like system produced by the community would be more affordable but would also lack long term support
 - » Commercial options (CAEN, Mesytec, etc.) would have long term support but would be more expensive
 - Perhaps prohibitively expensive
 - » SBIR could be more affordable and provide long term support
 - » <u>No consensus yet</u>

Hardware

Desire for more options for manufacture

Questions?

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

Backup Slides

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

TexAT - TexNeut

- Neutron detector array for use with TexAT & TeBAT
- Pseudo-bar design
 - 2x2x2 cm3 cubic crystals EJ-560
 - Read out conventionally from both ends by PMTs
- ⁹Li(p,n) experiment to compliment previous ⁹Li(p,p) experiment perfomed with TexAT

Dustin Scriven "TexAT-TPC and a Neutron Detector Array, TexNeut"

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

ND-Cube Active-Target Detector

ND- Cube

- Micromegas Anode pad plane
 - » 1008 anode pads
 - » <1 cm in size
- Double-layer THGEM (CERN)
 - Advantages for confining electron amplification to the holes of the THGEMs

Using Neon for Active-Target TPCs

- Ne gas is "sparky"
- It has a lower threshold for discharge
- H₂ gas as quench gas and Penning mixture
- Use of Ne:H₂ (95:5) and (98:2) mixture

Tan Ahn "Using Neon for Active-Target TPCs: Development Using the ND-Cube"

