Effect of in-medium crosssection on particle production in low energy nuclear collisions

Chi-Kin Tam, Western Michigan University On behalf of HiRA collaboration

Content

• Experiment

- ^{40,48}Ca + ^{58,64}Ni @ 56, 140 MeV/A
- Transverse Momenta spectra
- $R_{21}(N,Z)$ and Iso-scaling
- Transport model
 - AMD with secondary decay
 - Effect of event selection
- Filtered AMD model : constraints on σ_{NN}
 - Comparison with data
 - Iso-scaling

Kuan Z., Measuring neutrons in heavy ion collision, Ph.D. thesis, MSU (2020).

Experimental spectra

- Selected central events
- PID of p, d, t, ³He, ⁴He
- Efficiencies corrected

Isoscaling Ratio R_{21}

 $R_{21}(N,Z) = \frac{Y_2(N,Z)}{Y_1(N,Z)}$

Reaction 2 : ⁴⁸Ca + ⁶⁴Ni @ 140 MeV / A Reaction 1 : ⁴⁰Ca + ⁵⁸Ni @ 140 MeV / A

- $R_{21}(p), R_{21}(^{3}He) < 1$ implies more protons are produced in the proton-rich reaction
- $R_{21}(t) > 1$ implies more tritons produced in n-rich reaction

Isoscaling Ratio R_{21}

$$R_{21}(N,Z) = \frac{Y_2(N,Z)}{Y_1(N,Z)} = C \exp(\alpha N + \beta Z)$$

M.B. Tsang. at al PHYSICAL REVIEW C, VOLUME 64, 054615

- Grand-canonical ensemble
- Chemical potential $\alpha = \Delta \mu_n / T$, $\beta = \frac{\Delta \mu_p}{T}$
- Chemical Temperature similar in both reactions

limits comes from triton acceptance

Isoscaling Ratio R_{21}

$$R_{21}(N,Z) = \frac{Y_2(N,Z)}{Y_1(N,Z)} = C \exp(\alpha N + \beta Z)$$

M.B. Tsang. at al PHYSICAL REVIEW C, VOLUME 64, 054615

- Grand-canonical ensemble
- Chemical potential $\alpha = \Delta \mu_n / T$, $\beta = \frac{\Delta \mu_p}{T}$
- Chemical Temperature similar in both reactions

• $R_{21}(p) \approx R_{21}(^{3}He), R_{21}(d) \approx R_{21}(^{4}He)$ suggests $|\alpha| \approx |\beta|$.

- Can be used to construct pseudo-neutron spectrum $Y(n^*) = Y(p) \cdot Y(t) / Y(3He)$
- Sensitive to the in-medium cross section σ_{NN} in transport model

AMD : Model Detail

- Reaction systems
 - ⁴⁰Ca + ⁵⁸Ni @ 140 MeV/A
 - ⁴⁸Ca + ⁶⁴Ni @ 140 MeV/A
- Default AMD sec. decay
 - Dynamic part ends at 300 fm/c
 - 10 decays / prim. event
- Cluster correlation included
- Sensitivity
 - Effective mass : SkM*, SLy4
 - Symmetry energy : SLy4 modified SLy4 (L=108MeV)
 - In-medium cross-section $\sigma_{\!NN}$: screened and free

AMD : Model Detail

- Reaction systems
 - ⁴⁰Ca + ⁵⁸Ni @ 140 MeV/A
 - ⁴⁸Ca + ⁶⁴Ni @ 140 MeV/A
- Default AMD sec. decay
 - Dynamic part ends at 300 fm/c
 - 10 decays / prim. event
- Cluster correlation included
- Sensitivity
 - Effective mass : SkM*, SLy4
 - Symmetry energy : SLy4 modified SLy4 (L=108MeV)
 - In-medium cross-section σ_{NN} : screened and free

AMD : Model Detail

- Reaction systems
 - ⁴⁰Ca + ⁵⁸Ni @ 140 MeV/A
 - ⁴⁸Ca + ⁶⁴Ni @ 140 MeV/A
- Default AMD sec. decay
 - Dynamic part ends at 300 fm/c
 - 10 decays / prim. event
- Cluster correlation included
- Sensitivity
 - Effective mass : SkM*, SLy4
 - Symmetry energy : SLy4 modified SLy4 (L=108MeV)
 - In-medium cross-section σ_{NN} : screened and free

In-medium NN cross section σ_{NN}

- Probability of NN interaction
- reduced σ_{NN} in HIC (collective flow, stopping)
- reduction factor not well-constrained
- essential to reducing EoS uncertainties

$$\sigma_{NN}^{screened} = anh(\sigma_{NN}^{free} \, / \, \sigma_0)$$
 , $\sigma_0 = y \rho^{-2/3}$

- More reduction at large densities
- Isospin-dependence ignored
- Screened AMD we use y = 0.85

A quick look at the effect of σ_{NN} on n, p production in pure AMD $4^{0}Ca + 5^{8}Ni @ 140 MeV/A$

- Central events with mid-rapidity cut
- Neutron, proton yield reduced due to screened
- More yield in mid-rapidity region (interaction zone)
- More yield in low Pt

Next, we need to have a fair comparison with data, i.e. select AMD events with the same centrality as in data.

Fair comparison with Data

- Ideally, select AMD events with the same method as in data.
- Event selection in experiment
 - charge-particle multiplicity N_C measured by $\sim 4\pi~{\rm detector}$
 - Assume b decreases with N_C montonically
 - Ignore fluctuation in N_C for each b

$$\hat{b}(x) = \frac{b(x)}{b_{max}} = \frac{\sqrt{P(N_C \ge x)}}{\sqrt{P(N_C \ge N_{C,min})}}$$

- b_{max} : Estimated from beam intensity
- $P(N_C)$: measured multiplicity distribution

S., Sweany. Constraining the proton/neutron effective mass splitting through heavy ion collision, Ph.D. thesis, MSU (2020).

Event selection in AMD

- Count charge-particle multiplicity with experimental filter
 - angular coverage
 - E_{lab} threshold (Sn, Pb foil)
 - single hit per crystal per event

Remove events which are invisible in experiment

Target

Event selection in AMD

- Count charge-particle multiplicity with experimental filter
 - angular coverage
 - E_{lab} threshold (Sn, Pb foil)
 - single hit per crystal per event

$$\hat{b}(x) = \frac{b(x)}{b_{max}} = \frac{\sqrt{P(N_C \ge x)}}{\sqrt{P(N_C \ge N_{C,min})}}$$

- In model, fluctuation of b for each N_C
- Use N_C^{AMD} to determine b, comparable to data

2D histogram : true distribution of b against N_C^{AMD} Black pts : estimated b from N_C^{EXP} Green line : estimated b from N_C^{AMD}

Event selection in AMD

- Count charge-particle multiplicity with experimental filter
 - angular coverage
 - E_{lab} threshold (Sn, Pb foil)
 - single hit per crystal per event

$$\hat{b}(x) = \frac{b(x)}{b_{max}} = \frac{\sqrt{P(N_C \ge x)}}{\sqrt{P(N_C \ge N_{C,min})}}$$

- In model, fluctuation of b for each N_C
- Use N_C^{AMD} to determine b, comparable to data
- Experimental cut equivalent to $N_C^{AMD} \ge 10$ in model

2D histogram : true distribution of b against N_C^{AMD} Black pts : estimated b from N_C^{EXP} Green line : estimated b from N_C^{AMD}

Effect of centrality cut in AMD : p_T spectra

- A. Select events with b < 3 fm
- B. Select events with $N_C \ge 10$

2D histogram : true distribution of b against N_C^{AMD} Black pts : estimated b from N_C^{EXP} Green line : estimated b from N_C^{AMD} ⁴⁸*Ca* + 64*Ni* @140*MeV*/*A*

- Similar in proton p_T spectra
 - Spectrum with $N_C \ge 10$ is smaller at high p_T
 - Smaller available energy from collision in $N_C \ge 10$
- More at low p_T , could be phase-space effect.

Effect of centrality cut in AMD : p_T spectra

- A. Select events with b < 3 fm
- B. Select events with $N_C \ge 10$

2D histogram : true distribution of b against N_C^{AMD} Black pts : estimated b from N_C^{EXP} Green line : estimated b from N_C^{AMD}

⁴⁸*Ca* + 64*Ni* @140*MeV*/*A*

- Opposite trend in Helium spectra
- Spectra with $N_C \ge 10$ is larger at high p_T

Effect of centrality cut in AMD : t / 3He ratio

Diamonds : b < 3fm Circles : $N_C \ge 10$ • About 20 % difference in proton-rich reaction

Effect of centrality cut in AMD t / 3He ratio

Diamonds : b < 3fm Circles : $N_C \ge 10$

- About 20 % difference in proton-rich reaction
- About 12 % difference in proton-rich reaction

Effect of centrality cut in AMD : R_{21}

- Effect of different centrality cuts roughly cancels out in R_{21}
- The effect is also roughly cancels out in double ratio (not shown)
- Ready to compare AMD to experimental data

Diamonds : b < 3fm Circles : $N_C \ge 10$

Compare to experimental data

- Calculation with σ_{NN}^{free} agrees better with experimental p_T spectra
- Use of increased σ_{NN} in recent experiment Sn + Sn @ 270MeV/A

Physics Letters B 822 (2021) 136681 J.W. Lee Eur. Phys. J. A 58 201 (2022)

Similar trend in Helium p_T spectra

 $^{3}\mathrm{He}$

400

400

 $^{3}\mathrm{He}$

 $^{4}\mathrm{He}$

• Iso-scaling is observed in AMD with both σ_{NN}^{free} and $\sigma_{NN}^{screened}$

Points : Data Dotted Lines : AMD Shades : fit to isoscaling law

Points : Data Dotted Lines : AMD Shades : fit to isoscaling law

- Iso-scaling is observed in AMD with both σ_{NN}^{free} and $\sigma_{NN}^{screened}$
- reduced σ_{NN} : R_{21} (³He) is significantly larger than 1.
- free σ_{NN} : $R_{21}(p, {}^{3}\text{He})$ are below 1 which implies p-rich reaction produces more protons, ${}^{3}\text{He}$, as it should be.
- extracted chemical potential are in better agreement

Summary and outlook

- To correctly compare model to data, events should be selected in the same way as in experiment.
- Simple cut on b affects single ratios in the same reaction but not much in R_{21} or double ratio.
- Isoscaling observed in AMD with both σ_{NN}^{free} and $\sigma_{NN}^{screened}$
- p_T spectra and R_{21} calculated in AMD with free σ_{NN} are in a better agreement with experimental data at E_{beam} = 140 MeV/A compared to using reduced σ_{NN} .

Backup : effect of σ_{NN} over skyrme : proton spectra

Backup : AMD Detail

Backup : screening effect with different y

Backup : free $\sigma_{np} > \sigma_{nn}$, σ_{pp} at all densities

Phys. Rev. C 48, 1702 1993 Phys. Rev. C 49, 1994

Back up : experimental result for 56 MeV/A

Backup : Effect of centrality cut on Y(t) / Y(3He)

Backup : effect of σ_{NN} on spectra of d in d, t, ³He and ⁴He

 $p_T/A \; [{\rm MeV/c}]$

Backup : Result at E_{beam} =56 MeV/A

 $p_T/A \; [{\rm MeV/c}]$

