<u>Measurements of spectral change of</u> <u>vector mesons in nuclear matter</u> <u>at finite density</u>

<u>Satoshi Yokkaichi</u> (RIKEN Nishina Center)

Third J-PARC HEF-ex WS Tokai/Hyblid, 2023/Mar/14-16

- Physics
- J-PARC E16
 - Experiment & staging strategy
 - Status and Commissioning runs
 - Expected results
- Summary

J-PARC E16 Collaboration

RIKEN S. Yokkaichi, H. En'yo, K. Kanno, F. Sakuma, T.N.Takahashi KEK K. Aoki, R. Honda, K.Ozawa, R.Muto, Y. Morino, W. Nakai, S.Sawada U-Tokvo T.N. Murakami, CNS H. Murakami RCNP S.Ashikaga, H. Noumi, K. Shirotori Kyoto-U M. Naruki, M. Ichikawa, S. Nagafusa, S. Nakasuga, S.Ochiai, K.H.Yamaguchi JASRI A. Kiyomichi BNL T. Sakaguchi H. Sako, S.Sato Tohoku-U S.Kajikawa JAEA U-Tsukuba T. Chujo, S. Esumi, T. Nonaka Hiroshima-U K. Shigaki, Y.L.Yamaguchi NiAS H.Hamagaki Academia Sinica W.C. Chang, C.H.Lin, C.S.Lin P.H.Wang

In-medium mass modification of hadrons²

- hadron as the elementary excitation of QCD vacuum
 - elementary excitation on a ground state : changed when the ground state is changed
 - change of excitation reflects the vacuum nature : symmetry, phase
 - experimental examples in condensed matter: "softening" around Tc
 - hadronic spectral function could be changed (mass, width and more complicated structure) in hot and/or dense matter, different vacuum on the QCD phase diagram

• various theoretical calculations

QCD phase diagram

Experiments

HI collision proton induced photon induced

RED: on-going or future experiment

HDextWS 2023Mar16 S.Yokkaichi

observed dilepton spectra in the world⁵

$\eta' \rightarrow \gamma \gamma$ by LEPS2/BGOegg

J-PARC E16 experiment

- E16 will measure the e+e- decay of ρ/ω/φ produced in 30-GeV p+A (C, Cu, Pb, etc.) reactions.
- spectral change of mesons in nuclear matter can be observed through the inside-nucleus decay of mesons.
- Only E325 observed the change of φ meson in nuclear matter in the dilepton channel, which can be related to <ss>_ρ, a measure of (partial) restoration of chiral symmetry in dense matter.
- Goal of E16
 - establish the spectral change of vector mesons, particularly $\,\phi$ meson
 - more precise information of spectra, e.g. the momentum dependence of change,
 - through the systematic study
 - higher statistics (x10-100 of E325)
 - various nuclear targets
 - improved mass resolution (11MeV-> 6-8 MeV)

HDextWS 2023Mar16 S.Yokkaichi

E16 Detectors

- ~10 MHz interaction at the targets with 1x10¹⁰ protons/ 2 sec spill (5~6 sec cycle) of 30 GeV proton beam at the high-p line in the hadron hall, ~10 times as high as that of E325, in order to accumulate the higher statistics.
- Electron ID : Hadron Blind Detector(HBD) & lead glass EMC (LG)
- Tracking: GEM Tracker (3 layers of X&Y) / SSD (1 layer of $X \rightarrow \text{double side } X+U$, most inner)
 - 5 kHz/mm² at the most forward, 100µm resolution(x) for 5-6 MeV/c² mass resolution
 - to avoid mistracking due to the accidental hits, SSD is introduced
- Trigger : two electron candidates: separated ~60 deg. to suppress bkg pairs from π 0 Dalitz & γ conversion
 - e-candidate = GTR*HBD (e-mode)*LG(>0.4GeV) position and timing matching.

High-p line (B-line) and Branching point

Staging strategy

approved in 2017

- <u>RUN-0 -- 2020-21</u> -- 403 hours, C/Cu targets
 - Beamline / Detector commissioning + cross section
 - Prove that the E16 spectrometer works under the huge bkg.
 - 6 (SSD) + 6 (GTR) + 2 (HBD) + 2 (LG) proposed in 2017
 - 6 (SSD) + 8 (GTR) + 6 (HBD) + 6 (LG) were operated
 - with KAKENHI-Kiban-S (2018-22).
- RUN-1 -- 2023-24: -- 1280 hours, C/Cu targets
 - Physics run
 - 8 (SSD) + 8 (GTR) + 8 (HBD) + 8(LG)
 - Physics data taking. 15k of phi mesons
 - The full 8-module will be operated in 2023
 - by KAKENHI-Kiban-S (2020-24)
- **RUN-2** -- 2560 hours, C/Cu/Pb targets
 - Physics run to accumulate more statistcs to approach the slowest mesons, with various targets.
 - 26 (SSD) + 26 (GTR) + 26 (HBD) + 26 (LG)
 - not secured budgetary

10

E16 status

- Three commissioning runs (Run-0a/b/c, 403 hours in total) were performed successfully in 2020/Jun.-21/Jun.
 - With 6(SSD)-8(GTR)-6(HBD)-6(LG) ____
 - three target foils (Cu-C-Cu) were used in-line
 - » total interaction length was ~0.2%
 - » beam intensity was 1e10/spill = 5e9 Hz,
 - » thus 10 MHz interactions was expected
 - Electron ID and tracking performance were confirmed.
 - Unexpected micro beam structures, which deteriorates the DAQ live time, was found. Countermeasures are discussed.
- Updated TDR was submitted in 2022/May and reviewed
 - beam and trigger studies taking the countermeasures, before the Run-1, were approved in PAC- 34 (2022)
- Full 8 modules will be ready for beam at the end of Apr, 2023
- Run-0d is planned in May-June 2023
 - beam tuning of High-p line, to suppress the micro structure
 - trigger study for Run-1, with the improved beam

HDextWS 2023Mar16 S.Yokkaichi

11

SSD upgrade is performed

- Thanks to J-PARC E03 group, 6 SSDs were borrowed and operated in Run-0a/b/c, and the commissioning was successfully completed. We appreciate help by Dr. Tanida and Dr. Hayakawa from E03/JAEA.
- New 8 modules of SSD (expandable design to 26 modules) will be operated in Run-0d, developed in cooperation with CBM-STS group.

Persons working for each subsystem

- GTR : Ozawa, Murakami (Tokyo), Nakai (KEK)
- HBD : Aoki (KEK), Kanno (RIKEN)
- LG: Naruki, Nakasuga (Kyoto)
- SSD: Ozawa (KEK), Aoki, Yamaguchi , Ochiai(Kyoto)
- Beam/halo monitor: Morino (KEK)
- Target Chamber : Ozawa, Muto, Hirose (KEK)
- Trigger/DAQ/Software : Takahashi(RIKEN), Nakai Ichikawa Nagafusa (Kyoto), Honda (KEK), W.-C. Chang, P-H. Wang (Academia Sinica)
- H.Sako/S.Sato (JAEA), T.Nonaka (U-Tsukuba) participated in construction works and data taking.

Exp. area of E16 Run-0b 2021/Mar.

<u>TDR :</u> <u>Detector and trigger</u> <u>performances,</u> <u>beam micro structure</u>

TDR summary

- tracking performance [TDR \$3]
 - position resolution/detection efficiency are worse than the design value
 - room for improvement
 - resolution: improvement of calibration
 - efficiency: GTR300 improvement /SSD y-layer
 - track reconstruction efficiency is almost same as the design
- electron ID [\$4] appeared in NIM A1041 (2022) 167335
 - design values are almost achieved
 - except HBD-trigger performance
 - noise on ASD: LV/wiring improvement is planned.

TDR summary (cont'd)

- trigger rate [\$5]
 - ~100 times higher than expectation
 - due to the beam structures, HBD-trig (pion rejection) & pi-momentum distribution @ forward (LG-pi rejection)
 - Dalitz pair may not be a main component for the time being
 - main source: accidental coincidence with higher event overlap
 - expected 2k/spill was achieved, w/ strict condition & ~60% intensity beam
- beam micro structure [\$8]
 - 5.2 $\mu s\,$ due to the dispersive optics
 - 5 ms due to the current ripple
 - countermeasures are proposed and will be applied
 - About 10 times higher interaction rate instantaneously
 - causes the DAQ live-time deterioration and fake triggers due to the event-overlap more than expectation
- before the physics run, beam study & trigger study are required

expected results

examples of

model -independent analysis (prove the spectral modification using the excess ratio) & model-dependent analysis (momentum dependence of mass)

for ϕ meson

excess ratio in E325

- Nexcess/(Nexcess+Nphi)
 - index of the modification

HDextWS 2023Mar16 S.Yokkaichi

 larger excess in lower βγ (slower) bin : consistent with the modification in nuclei

excess ratio in E325

- Nexcess/(Nexcess+Nphi)
 - only slow Cu is significant in E325

excess ratio in E16 Run-1 [sim.]

- Nexcess/(Nexcess+Nphi)
 - all bins for Cu are significant in E16 Run-1
 - 15k φ : x6 stat. of E325

 larger excess in lower βγ (slower) bin :

the tendency become more clear and significant than that of E325.

• clear signal of modification

E16 Run-2 prospect [sim.]

- Pb targets (30um x 3)
- full (26) modules x 106 days •
- modified BW ($k_1 = 0.034 \& k_2 = 2.6$)

selecting only $\beta \gamma < 0.5$ (very slow, only 1% of accepted)

8+8+8+8 module

Pb

Cu

350F

300

bo4 8+8+8+8 module

1487

0.819

momentum dependence

- momentum dependence of mass
 - experimentally: extrapolation to p=0, to compare with theoretical predictions
 - theoretically: dispersion relation

momentum dependence and stat.

- momentum dependence of mass
 - experimentally: extrapolation to p=0, to compare with theoretical predictions
 - theoretically: dispersion relation

HDextWS 2023Mar16 S.Yokkaichi

<u>momentum dependence and stat.</u>

- momentum dependence of mass
 - experimentally: extrapolation to p=0, to compare with theoretical predictions
 - theoretically: dispersion relation
 - curve: Lee's prediction (PRC57(98)927 & NPA670(00)119c, up to 1GeV/c) •
- error bars in full statistics (F325 x100) • [MeV] mass(1020) Φ 1020 $N_{\text{excess}}^{0.3} / (N_{\text{excess}}^{+} N_{\phi})$ Nexcess /(Nexcess +N∳) 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Cu Model Calc. k=0.04 Cu Model Calc. k=0.02 Measured by E325 lel Calc. k⊧0.04 ∆M~35MeV Ţ Model Calc_k⊧0.02 1000 980 0 0 -0.1 -0.1 1.5 1 2 2.5 3 1.5 960 1 βγ Expected E325 E16 full stat. 0 1 2 3

momentum [GeV/c]

I

2

HDextWS 2023Mar16 S.Yokkaichi

2.5

3

βγ

momentum dependence and stat.

- momentum dependence of mass
 - experimentally: extrapolation to p=0, to compare with theoretical predictions
 - theoretically: dispersion relation
 - curve: Lee's prediction (PRC57(98)927 & NPA670(00)119c, up to 1GeV/c)

HDextWS 2023Mar16 S.Yokkaichi

momentum dependence and stat.

- momentum dependence of mass
 - experimentally: extrapolation to p=0, to compare with theoretical predictions
 - theoretically: dispersion relation
 - curve: Lee's prediction (PRC57(98)927 & NPA670(00)119c, up to 1GeV/c)
 Kim& Gubler (PLB 805(2020)125412, up to 3GeV/c)

- J-PARC E16 will measure the spectral change of vector mesons in nuclei with the e⁺e⁻ decay channel, using 30-GeV primary proton beam in the High-momentum beam line
 - confirm the observation by E325 and obtain more precise information of the spectral change of vector mesons in dense nuclear matter
- Commissioning runs (Run-0a/b/c) were performed in 2020-21
 - eID detectors worked as designed
 - GTR has slightly worse efficiency
 - trigger rate was higher and DAQ performance was worse than the design, mainly due to the beam micro structure
 - countermeasures in beamline and DAQ will be applied.
- Full 8 modules will be ready in the end of Apr. 2023
- Run-0d, to confirm the beam improvement, in May-June 2023
 - Run-1 approval will be requested based on the result
- First Physics Run (Run-1) in 2023-24 is planned
 - spectral change will be shown model-independently
 - spectral shapes and momentum dependence of mass will be compared with theoretical predictions