

TRIP-RIBF実験キックオフミーティング

2023.4.21 RIKEN, Wako, Japan

中高エネルギー(数百MeV/核子)の原子核衝突

Part I: 全反応断面積の系統解析

Part II: 陽子弾性散乱断面積の系統解析

具体的な計算例を紹介しつつこれら「系統解析」の意義を示す

Part 1: 全反応断面積

- 全反応断面積~π(R_P+R_T)²
 - 原子核半径
 - ハロー、変形
 - Glauber理論が有効
 - 近似法は良くテストされている
 - インプット
 - 標的、入射核の密度
 - 核子ー核子プロファイル関数
 - 後で調整するパラメータのない計算

WH, Y. Suzuki, B. Abu-Ibrahim, A. Kohama, Phys. Rev. C 75, 044607 (2007)

<u>WH</u>, T. Inakura, T. Nakatsukasa, Y. Suzuki, Phys. Rev. C 86, 024614 (2012) S. Watanabe+, Phys. Rev. C 89, 044610 (2014) Expt. M. Takechi et al., Phys. Rev. C 90, 061305(R) (2014)

Expt.: B. Pritychenko, M. Birch, B. Singh, and M. Horoi, At. Data Nucl. Data Tables 107, 1 (2016).

Zr同位体の変形領域拡大現象

WH, T. Inakura, S. Michimasa, M. Tanaka, Phys. Rev. C (Letter), accepted (4/12), arXiv:2304.06238

原子核半径研究の様々なプローブ

- •標的により密度分布に対する感度が異なる
 - •炭素標的
 - •標準、表面付近の物質密度に感度 → 物質半径
 - 陽子標的
 - 内部構造、クーロン分解効果が無視できる
 - エネルギー依存性を利用 → 中性子スキン

WH, Y. Suzuki, T. Inakura, Phys. Rev. C 89, 011601(R) (2014) WH, S. Hatakeyama, S. Ebata, Y. Suzuki, Phys. Rev. C 93, 044611 (2016)

- 重陽子標的
 - 重陽子の波動関数は良く知られている
 - 中性子標的断面積導出の可能性

WH, Y. Suzuki, T. Uesaka, M. Miwa, PRC102, 054601 (2020)

の感度:反応半径の経験式
反応半径
$$a_R(N,Z,E,T) = \sqrt{\sigma_R(N,Z,E,T)/\pi}$$
,
 $a_R(N,Z,E) = \alpha(E)r_m(N,Z) + \beta(E)\delta(N,Z) + \gamma(E)$
 $\alpha(E), \beta(E), \gamma(E)$ は最小二乗法で決める
 $\chi^2(E) = \frac{1}{N} \sum_{N,Z}^{N} [a_R^{\text{HF}}(N,Z,E) - a_R^{\text{Fit}}(N,Z,E)]^2 \chi \sim 0.01-0.02 \text{ fm}$
• $\alpha(E)$: ほぼ一定 → 断面積から半径が導出できる

- β(E): 陽子標的はδに感度あり
 炭素標的は感度なし
- γ(E): 同様の振る舞い
- Universalな関数
 同位体依存性は小さい ⇔ 相互作用依存性が小さい

2エネルギー点の断面積測定でスキン厚と半径が導出可能

WH, S. Hatakeyama, S. Ebata, Y. Suzuki, Phys. Rev. C 93, 044611 (2016)

中性子断面積導出の数値実験

WH, Y. Suzuki, T. Uesaka, M. Miwa, PRC102, 054601 (2020)

 理論で得られたσ_d(HF)、σ_p(HF)を「測定値」とし、フェルミ分 布密度のパラメータを決定

$$\rho_N(r) = \frac{\rho_{0N}}{1 + \exp[(r - R_N)/d_N]}$$

その後 $\sigma_n(2pF)$ を計算し、 $\sigma_n(HF)$ と比較する

- ・2pF1: 2つのエネルギー点(100, 200 MeV)でデータがある場合
 - 4つの観測量、4つの未定パラメータ(R_n, R_p, d_n, d_p)

→ 「測定値」と良い一致

- ・ 2pF2: 1つのエネルギー点(100 MeV)のみでデータがある場合
 - d_n=d_p=0.6 とすると、2つの観測量、2つの未定パラメータ(R_n, R_p)
 →「測定値」から最大で2%程度ずれる(40 MeV)

Part II: 陽子弾性散乱断面積

- 第一ピークの散乱角 θ_{M} \Leftrightarrow 物質半径
- 第一ピークの断面積 & 核表面の"ぼやけ" (diffuseness)

一対一対応

Diffusenessはフェルミ面近傍の単一粒子軌道を反映 WH, Prog. Theor. Exp. Phys. 2021, 123D01 (2021). 分光学的情報を得るのに利用できないか

- 直接的に外側を見る → 原子核の変形
- 間接的に内側を見る → 「泡」原子核、芯核増大現象

"diffuseness"の抽出

S. Hatakeyama, WH, A. Kohama, Phys. Rev. C 97, 054607 (2018)

変形による表面密度変化:Ne, Mgの例

V. Choudhary, WH, M. Kimura, R. Chatterjee, Phys. Rev. C 104, 054313 (2021).

• 0f7/2 (1.21) と 1p3/2 (0.76) の混合状態

低い角運動量状態が大きな核のぼやけを引き起こす WH, PTEP2021, 123D01 (2021).

殻・クラスター状態の判別: 44,52Tiの WH and N. Itagaki, Phys. Rev. C 106, 044330 (2022)

反対称化準クラスター模型(AQCM) N. Itagaki, H. Matsuno, T. Suhara, Prog. Theor. Exp. Phys. 2016, 093D01. 殻的配位とクラスター的配位を同時に表現可能な枠組み <u>殻模型型(S-type)</u>: j-j結合殻配位を仮定し、パラメータνは荷電半径を再現 クラスター型(C-type): 芯核+α配位を仮定、vは芯核の荷電半径、Rは親核の荷電半径を再現

44Ti • **殼的配位:** 0.551 (40 Ca) → 0.557 fm (44 Ti)

「 ・ クラスター配位: 0.551 (⁴⁰Ca) → **0.625** fm (⁴⁴Ti)

¹²C, ¹⁶Oにおける殻・クラスター競合

WH and N. Itagaki, Phys. Rev. C 107, L021304 (2023).

 10^{4}

 10^{4}

dơ/dΩ (mb/sr)

発展課題

• ²⁰Neへの拡張

Y. Yamaguchi, W. Horiuchi, N. Itagaki, in prep.

• ²⁸Si, ³²S, ³⁶Ar,…

外部の情報から内部を調べる:泡構造

 $\sigma_R =$

極端な例:²⁸Si(球形を仮定)

(0d)⁶ と (0d)⁴(1s)²の混合を考える

$$\rho(\alpha; r) = (1 - \alpha)\rho^d(r) + \alpha \rho^s(r)$$

V. Choudhary, WH, M. Kimura, R. Chatterjee, Phys. Rev. C 102, 034619 (2020)

30

35

内部密度の変化:芯核増大現象

・⁴²⁻⁵¹Caの相互作用断面積測定

• N>28領域での断面積の急激な増加

荷電半径(⁵⁰⁻⁵²Ca)の増加, R.F. Garcia Ruiz et al., Nat. Phys.12 594 (2016)

- ・ 断面積の増加機構
- ×変形?
 - Caは球形

M.V. Stoitsov et at., Phys. Rev. C 68, 054312 (2003)J.-P. Delaroche et al. Phys. Rev. C 81, 014303 (2010)S. Tagami et al., Phys. Rev. C 101, 014620 (2020)Garcia Ruiz et al., Phys. Rev. C 91, 041304(R) (2015)

×弱束縛?

一中性子分離エネルギーS_n ⁴²⁻⁵²Ca ~5-6MeV
 Wang et al., Chin. Phys. C 41, 030003 (2017)

新たな機構?

M. Tanaka et al., Phys. Rev. Lett. 124, 102501 (2020)

Ca同位体の芯核増大:芯核密度の飽和

Skyrme-Hatree-Fock計算

0.2 -

0.15

0.1

0.05

0

0

(a

WH and T. Inakura, Phys. Rev. C 101, 061301(R) (2020)

Pbにおける芯核増大現象 WH and T. Inakura, Phys. Rev. C 105, 044303 (2022)

Pb: 対相互作用による芯核増大

Pb同位体の芯核増大機構

対相互作用は

- ・1g9/2と0i11/2軌道の混合 と
- 「価中性子」軌道の収縮 を引き起こす

(内部に密度を送り込む働き)

²¹⁴Pbの価中性子密度(N=6)

"diffuseness"の変化

WH and T. Inakura, Phys. Rev. C 105, 044303 (2022)

陽子と中性子の表面を分離する

- 中性子過剰同位体
 - 陽子と中性子の核表面が異なる
 - ・中性子表面が主要な核構造情報を持つ → 中性子分布のdiffuseness
- •陽子標的の入射エネルギー依存性を利用

|2pF分布を用いた「数値実験」

• 4 つの観測量

2つのエネルギー点による第一ピークの散乱角と断面積

4つの未定パラメータ: r_n r_p a_n a_p

陽子・中性子表面の分離

Nuclide	(E_L, E_H)	r_m	r_n	a_n	r_p	a_p
¹²⁰ Sn	(200,300)	4.691	4.725	0.455	4.645	0.619
	(200,550)	4.686	4.720	0.506	4.639	0.507
	(200, 800)	4.685	4.724	0.470	4.629	0.525
	(300,550)	4.683	4.708	0.543	4.648	0.455
	(300,800)	4.683	4.713	0.543	4.640	0.448
	HF+BCS	4.662	4.723		4.576	
²⁰⁸ Pb	(200,300)	5.580	5.604	0.492	5.542	0.604
	(200,550)	5.575	5.608	0.532	5.424	0.507
	(200,800)	5.574	5.613	0.542	5.514	0.479
	(300,550)	5.571	5.592	0.558	5.538	0.463
	(300,800)	5.570	5.603	0.557	5.519	0.458
	HF+BCS	5.551	5.617		5.448	
¹³² Sn	(200,300)	4.821	4.851	0.539	4.776	0.448
	(200,550)	4.823	4.856	0.539	4.765	0.445
	(200, 800)	4.822	4.875	0.535	4.723	0.443
	(300,550)	4.818	4.844	0.539	4.779	0.446
	(300,800)	4.820	4.852	0.537	4.763	0.445
	HF+BCS	4.802	4.890		4.656	

4つの観測量

2つのエネルギー点による第一ピークの 散乱角と断面積
4つの未定パラメータ: r_n r_p a_n a_p

• ¹²⁰Snや²⁰⁸Pbでは結果が大きくばらつく

