

ZDC-h for ePIC

Yongsun Kim (Sejong University)

EIC-Asia meeting 2021.05.25

Dual-readout calorimetry

- Dual-readout 101
 - The major difficulty in measurement shower comes from EM fraction (f_em)
 - f_em can be precisely measured by implementing two channels with different h/e response i module

a)

- Can offer high-quality energy resolution for both EM and hadrons
- Demonstrate engineering aspects for full geometry detector
- 20+ years R&D: CERN RD52 experiment

Beam test plan in 2021 (at CERN)

Specification of fibers

Electronics

- Copper trays are grooved for the space for fibers (cave) and stacked layer by layer
- Fiber diameter = 0.98 mm
- Cave diameter = 1.1 mm
- Fiber installed every 2.5 mm, making 0.5 mm space between neighboring ones
- PMT or SiPM
 - Each PMT takes 450 fibers
 - Each SiPM handles 9 fibers
- (Much) over-specification for ZDC-h

Sc/fi design for ZDC-h?

	\$
Scintillation fiber (/m)	2
Cerenkove fiber (/m)	0.38
Cu (/kg)	9.75
W (/kg)	39.25
Generic PMT (/piece)	1122
SiPM (/piece)	10
Elecronics for generic PMT (/channel)	50
Elecronics for SiPM (/channel)	10

<section-header>

(million \$)

М\$ Inlay Full Cu Generic PMT 1.3 30.7 1-on-1 SiPM 6.4 147.3 Grouping SiPM 1.8 40.1 W Generic PMT 1.8 40.6 1-on-1 SiPM 6.9 157.2 Grouping SiPM 2.2 50.0

- Tower size: 46x46x250 mm³
- Each tower has 30x30 fibers
- One PMT corresponds to 450 fibers
- 1-on-1 SiPM: Each SiPM connected to single fiber
- Grouping SiPM: Each SiPM to 9 fibers

3d printing for copper module

- Two major questions on the DRC for engineering aspects
 - Complex design, projective shape
 - Innovative 3D printing technology can be a solution
- Use 3D metal printer to materialize Cu blocks with fine structure holes
 - 1mm hole diameter, 0.5 mm wall thickness between holes
- Prototype under test and discussion
 - 1st samples (from Finland), 2nd & 3rd samples (from China) tested
 - 50 cm length prototype module is being produced

3d printing for copper module

• 1st samples (from Finland, using EOS 3D printer)

• 2nd samples (from China, using Farsoon)

ALICE Focal-h

- Copper capillary tube with plastic scintillator fiber
 - Outer diameter = 2.5mm -> Spacing = 2.5 mm (x), 2.16 mm (y)
 - 1440 fibers in total, 5x6 fibers grouped in 48 bundles
 - Each bundle followed by each SiPM

ZDC-h?

- New design (Goto-san's slide)
 - No imaging (Pb-Si) layers for hcal sectors
 - Pb-(Sc + Fused silica) [10 cm x 10 cm x 48 cm] x [4 x 4 towers]
- Parameters to be fixed
 - What's the best materials? Cu, Pb, anything else?
 - Is dual (C+S) configuration necessary?
 - What is the optimal number of fiber grouping for each SiPM?
- Can we improve the resolution for single readout (Cerenkov-only) by increasing the number of SiPM?
- Simulation study will start soon

BACKUP

GEANT4 simulation

- Various simulation studies are performed
 - Using full GEANT4 simulation
 - DD4HEP migration is done
 - Develop fast simulation for optical photon transport in GEANT4
- Excellent resolutions
 - EM ~11 % $/\sqrt{E}$
 - Had ~26 % / \sqrt{E}
- q/g jets identification using ML
 - To be a key benefit for hard probe research at EIC

Some notes for ZDC-h development

- Parameters to be determined
 - Fiber diameter and spacing
 - Should it be dual? Only quartz?
 - Number of readouts