

Satoshi Yano Hiroshima University SKCM²

EIC-Asia meeting 05/25/2023

Time of Flight (TOF) in ePIC detector Default (v0) design

- Time of flight (TOF) covers $|\eta| < 1.4$ (barrel-TOF) and $1.7 < |\eta| < 4$ (endcap-TOF)
- Timing resolution of ~30 ps is required for low to middle p_T PID
 - $R_{barrel} = ~63 cm (1 layer), z_{endcap} = 156 cm and 171 cm (2 disks)$
- Spatial resolution of ~30 um is required for the tracking performance
- $X/X_0 \sim 1\%$ material budget is required for hpDIRC and dRICH performance
- AC-LGAD technology is the best choice for the detector
 - Barrel: 0.5 x 10 mm² strip
 - Endcap: 0.5 x 0.5 mm² pixel

middle p_T PID 2 disks)

Working group structure in ePIC

- TOF PID WG
 - Detector performance and simulation study
- eRD112/LGAD
 - Sensor R&D, Sensor/ASIC integration, Module structure
- eRD109
 - Frontend ASICs, Frontend electronics
- PED (Project Engineering Design)
 - Mechanical engineering, Electronic engineering

News from TOF PID WG

News

• **TOF DSC organization**

- Collect interests in R&D and construction query
- Connect institutions with working groups <u>list</u>
- ePIC Simulation (next campaign starts on June 1, next next one on July 1)
 - TOF in tracking Nicolas: fix the issue with full forward TOF geometry in tracking
 - TOF PID in reconstruction Oskar/Zhenyu: reconstruction, validation plots
 - TOF digitization Adam/Souvik: charge sharing and detector noise
- EIC Project Detector R&D (eRD112/109)
 - Latest updates: Indico pages May 16 and June 6
- EIC Project Engineering Design (TOF PED)
 - Presentation on updated mechanical engineering proposal by Andy et al. next week (May 30)
 - Meeting on integration with project engineer team **tentatively in the week of June 5**
- EIC Project Review on ePIC PID detectors on July 5-6 or 6-7
 - To assess the current state of all PID detectors, serve as a status report for Project Management and DOE
 - EIC Project Technical Review of the calorimeters in 12/2022: https://indico.bnl.gov/event/17721/ (PC: TR2022ECalHCal)
- EIC User Group Meeting @ Warsaw on July 23-31 https://indico.cern.ch/event/1238718/

From Zhenyu's presentation (link)

• TOF service in simulation – TBD: implement the missing material for mechanical support structure, cooling and cabling

• FY23 report and FY24 proposal due on July 7 (internal deadline June 20): Overleaf view link (for editing, please contact Zhenyu)

Zhenyu Ye @ UIC

News from TOF PID WG

- behind TOF

 - Some options have been proposed (we must keep a close eye on their study)

There is a proposal to place TOF ~4cm (~6%) inside and a new gas detector is installed just

With the current tracking configuration, the tracking performance within $0.9 < \eta < 1.5$ is not sufficient

From Ernst's presentation (link)

News from eRD112/LGAD

- The most recent meeting took place last week Tuesday (16 May 2023) ullet
 - https://indico.bnl.gov/event/19471/

AC-LGAD Sensor R&D

- \bullet

 - 4th BNL (02/2023-06/2023): deep gain layer to increase signal amplitudes

1st/2nd BNL Production 0.2-cm long

From Zhenyu's presentation (link)

Production of medium/large area sensors with different doping concentration, pitch and gap sizes between electrodes and Si thickness to optimize performance by BNL IO and HPK. 1st BNL (06/2021-11/2021): 5-25 mm strips with 500 µm pitch, 100-300 µm electrode width, 50 µm active Si 2nd BNL (06/2022-11/2022): 5-25 mm strips with 500-700 µm pitch, 50-100 um electrode width, 20-50 µm Si 3^{rd} BNL (08/2022-12/2022): pixels with 500-700 μm pitch, various electrode shapes, 20-50 μm Si 1st HPK (06/2022-04/2023): strip+pixel sensors with different electrode width, active thickness and n⁺ doping

3rd BNL Production

Joint HPK Production

eRD112

News from eRD112/LGAD

- The latest BNL sensor test has been proceeded by several institutes ullet
 - FNAL: 120 GeV proton beam ____
 - Signal strength with varying active volume thickness and electrode geometry
 - UCSC: IR laser tuned for MIP signal —
 - Signal strength and charge sharing with varying strip electrode width, length, and pitch

From Irene's presentation (link)

From Simone's presentation (link)

- New HPK sensors have arrived at UIC! ullet
 - Several type sensors with varying parameters

HPK Sensors

5/17/23

Zhenyu Ye @ UIC

From Zhenyu's presentation (link) If you are interested in AC-LGAD sensor R&D, please contact Zhenyu!

11

News from eRD112/LGAD

- Total of 90 strip sensors •
 - 5 different lengths (18 sensors for each kind) •
- Total of 72 pixel sensors •
 - 3 different sizes of metal pads (24 sensors for each kind)
- Total of 32 pad sensors \bullet
 - Same pad size

News from eRD112/LGAD

Breaking news about HPK sensors from UIC ullet

- Quick test with IR laser

From Shirsendu's presentation (link)

HPK

HPK has 3 x larger signal compared to BNL sensors with RI laser

News from eRD109

- The next meeting will take place on 6 June 2023 •
 - https://indico.bnl.gov/event/19471/ ____

Frontend ASIC R&D

- R&D Goals
- Plan
 - •

EICROC by IJCLab/Omega/Irfu/AGH

- Preamp, discri. taken from ATLAS ALTIROC
- I2C slow control taken from CMS HGCROC
- TOA TDC adapted by IRFU Saclay
- ADC adapted to 8bits by AGH Krakow
- Digital readout: FIFO depth8 (200 ns)

Adapt the Constant Fraction Discriminator (CFD) principle in a pixel paired with a TDC, one time measurement gives the final answer. • Charge injection consistent with simulations: \sim 30 ps at 5 fC, and <10 ps at 30 fC Tested with laser, beta source and beam

5/5/2023

From Zhenyu's presentation (link)

• 15-20 ps jitter with minimal (1 mW/ch) power consumption, match AC LGAD sensors for EIC

Continue the ASIC prototyping efforts and utilize the design and experience in ASICs for fast-timing detectors from ATLAS and CMS, and investigate common ASIC design and development for RP/B0 and ToF

FCFD by Fermilab

Zhenyu Ye @ UIC

ASICs by SCIPP

Developer	ASIC	Technology
INFN Torino	FAST	110 nm CMOS
NALU Scientific	HPSoC	65 nm CMOS
Anadyne Inc	ASROC	Si-Ge BiCMOS

5

EICROC's follow-up report is awaited!

- TOF is the most important PID detector from the low to middle p_{T} range lacksquare
 - There is a proposal to place TOF ~4cm inside and a new gas detector is installed just behind TOF _____
- AC-LGAD technology is being planned to use ullet
- BNL product sensors have been tested •
 - Beam and IR laser have been used
 - Timing resolution ~ 30 ps has been achieved
- HPK sensors have arrived at UIC lacksquare
 - 3 x larger signal length compared to the BNL sensor has been observed by the IR laser test
 - Next week beam test will proceed at FNAL ____
 - If you are interested in AC-LAGD sensors R&D, please contact Zhenyu