電波・可視光同時観測による カニパルサーの巨大電波パルス 放射機構解明に向けて

Toward unraveling the emission mechanism of Giant Radio Pulses from Crab pulsar by simultaneous observation with radio and optical bands

> Univ. of Tokyo / Yamagata Univ. D2 Kazuaki Hashiyama

Neutron Star Workshop 2023 @ Kyoto Univ.

What is "Giant Radio Pulse (GRP)" ?

• GRP is a transient-bright radio pulses

- >100 times brighter than the normal pulse
 - Two types: Main Pulse GRP (MPGRP) and Inter Pulse GRP (IPGRP)
- Unpredictable and unexplained
- Detection rate is variable because of the disturbance of the plasma
 e.g.) 1000–3200 GRPs/1 hour @300 MHz
- Detected at ~0.1 % of pulsars
 - Crab pulsar is a suitable object because it is brighter than other pulsars!

First, we have to understand Crab-GRPs to unveil the widely emission mechanism

Trigger for emitting GRPs ..?

- Release energy by magnetic reconnection (e.g. Lyubarsky+19)
 - Does the magnetic filed structure change before emitting GRPs?
 - Single Pulse (SP) will be useful to investigate the variance
 - Time averaged pulse will reduce the change i.e. SP is important!

Importance of optical observation

• Observation of Single Pulses (SPs)

- Radio: Nebula emission is stronger than crab pulsar = difficult!
- X-ray $\cdot \gamma$ -ray: Less photon statistics = difficult!
- **Optical:** Tough requirement for detectors, but there're some precedents

- Imager of MPPC-based Optical photoN counter from Yamagata
 - Sensor: MPPC made with a semiconductor
 - Detection of the single-photon is possible by customized the Geiger APD
 - High sensitivity and high time resolution
 - ✓ Efficiency: max. 60% @450 nm (Range: 270–900 nm)
 - ✓ Time resolution: <u>max. 100 ns</u>

Higashi Hiroshima Observatory

Kanata telescope

- Aperture: <u>1.5 m</u> and Focal length: <u>18300 mm</u>
- Set IMONY at Nasmyth focus
 - ► FY2021: □100 um sensor 4 × 4 array
 - ► FY2022: □150 um sensor 8×8 array ← Expanded the FoV!

Observation in FY2021

- Assignment: A star image came out of the sensor
 - Using \Box 100 um sensor and 4 × 4 array, FoV will be ~4" = Narrow
 - Could not execute the stable observation because the tracking accuracy is limited and the FoV is narrow

FY2022: Test for the stable observation

• Aimed the stable observation to expand the sensor area

- 4×4 array to 8×8 array (FoV is 2 times wider)
- The Crab imaging position is gradually shifting toward the left side
 - But the image is in the sensor at least 10 min observation

FY2022: Evaluation of the stability

Neutron Star Workshop 2023 @ Kyoto Univ.

FY2022: Crab pulsar observation

- Valid obs. time was 2010 sec (~34 min) $ \begin{array}{r} \text{Date} & \text{JS1} & \text{Target} & \text{Observation time [s]} \\ \hline 1/21 & 19:46:17 & \text{Flat} & 61/61 \\ & 21:24:41 & \text{Dark} & 61/61 \\ & 02.42.17 & \text{Gala} & 0.14 \\ \hline \end{array} $	Observation		IOT	T	
- Valid obs. time was 2010 sec (~34 min) 1/21 19:46:17 Flat 61/61 21:24:41 Dark 61/61	Observation	Date	JS1	larget	Observation time [s]
21:24:41 Dark 61/61	- Valid obs. time was 2010 sec (~34 min)	1/21	19:46:17	Flat	61/61
			21:24:41	Dark	61/61
• Data analysis $22:42:17$ Crab $11/11$	 Data analysis 		22:42:17	Crab	11/11
22:47:15 Crab 547/610			22:47:15	Crab	547/610
- Converted the photon detection time to 22:57:24 Crab 488/610	 Converted the photon detection time to 		22:57:24	Crab	488/610
the barycentric dynamical time 23:25:13 Crab 547/610	the barycentric dynamical time		23:25:13	Crab	547/610
Dark / Elet correction $23:38:53$ Crab $417/480$	Dark / Elat aarraatian		23:38:53	Crab	417/480
- Dark / Flat correction Total 2010/2321	- Dark / Flat correction			Total	2010/2321
 Convolution with a pulsar rotating period 	 Convolution with a pulsar rotating period 				· · ·
×10 ⁴	×10 ⁴				
2.50 P1	2.50 P1	Crok			
2 25 P2	25 P2	Crac) puisa	ar wa	s detected
OFF OFF	OFF	with our new system!			
¥ 2.00	2.00				
0,1.75	L.75				

0.75

0.50

0.25

1.00

Phase

1.25

1.50

1.50

1.25

0.00

2.00

1.75

Radio Observation

- Motivation: Investigate the optical SPs before and after GRPs
 - Need to develop the analysis environment for radio data
 - Pulse de-dispersion analysis was needed
- litate radio telescope
 - Frequency: **317.1–333.1 MHz** (BW=16 MHz)
 - High detection rate at a lower frequency
 - Observing at the ~300 MHz is better!

Neutron Star Workshop 2023 @ Kyoto Univ.

Pulse dispersion

- Pulse arrival time was delayed by the inter stellar plasma
 - The higher the frequency component, the earlier the arrival time
 - Data correction is needed: De-dispersion analysis

GRP waveform after de-dispersion

• 2021/12/5 12:56:19 GRP @litate

- 165 times stronger than the 1σ fluctuation of the Crab Nebula emission
- GRP waveform was restored by de-dispersion analysis

Analysis result of the sample data

Observation time vs. phase vs. SNR

- GRP detection time was matched in 10 us accuracy with collaborators

Summary

- Motivation
 - Understand the GRP trigger presence and unveiling the GRP emission mechanism by radio-optical simultaneous observation
 - Investigate the optical SPs before and after GRPs
 - Radio: Difficult to detect SPs because the nebula emission is stronger than the crab pulsar
 - Optical: Possible with the high sensitivity & time resolution camera + Large telescope

Because the Integration

time was 50–100 us

- Observation with IMONY × Kanata Telescope
 - FY2021: Detected the Crab pulsar with 4 × 4 array
 - ► Imaging position was came out of the camera sensor: ~1 h
 - FY2022: Expand 4×4 array to 8×8 array
 - Was being in the sensor at least ~<u>10 min</u> observation
- For the radio observation
 - De-dispersion system was developed
 - Detection time was matched in 10 us accuracy with collaborators

Future prospects

- SP observation with Kanata Telescope
 - Photon counts are not enough to get a significance of SPs
 - Want more photons!
- Observation with <u>Seimei Telescope</u> ..?
 - $\Phi = 3.8$ m and 6.24 times higher light gathering power
 - Preparing for the observation is ongoing!
 - Simulation shows that we can detect ${>}4\,\sigma$ for P1

Backup

What is pulsar?

• Pulsar

- Has a strong magnetic field (>10¹² G) and a fast rotation period (ms-sec)
- When the emission axis towards the earth, we detect it as a "PULSE"
- Famous pulsars: <u>B0531+21</u>, B0833–45 (Vela), B0633+17 (Geminga)
- B0531+21 (Crab pulsar)
 - $P \sim 33.8 \text{ ms}$, $\dot{P} \sim 4.2 \times 10^{-12} \text{ s/s}$
 - Convert the rotation energy to the emission energy $L_{\rm spin-down} \sim 4.8 \times 10^{38}$ erg/s

Methods of detecting fluctuation

- Fluctuation of the peak phase
 - Emission region may change due to the fluctuation of the magnetic field
- Fluctuation of the pulse flux
 - Strength of the magnetic field may change (assuming the synchrotron emission)

De-dispersion analysis

Dispersion

- Time delay of radio pulses which depends on the radio frequency
 - Caused by the interaction with the interstellar plasma

$$\Delta t_{f_1 < f_2} = \frac{e^2}{2\pi m_e c} \times \int_0^L n_e(s) \, ds \times \left(\frac{1}{f_1^2} - \frac{1}{f_2^2}\right)$$

Coherent de-dispersion method

- \blacktriangleright Execute FFT \rightarrow multiply the phase shift term \rightarrow IFFT
- FFT of the time-shifted function: if let Δt as t_0

$$\int_{-\infty}^{\infty} p(t-t_0)e^{-i\omega t}dt = \int_{-\infty}^{\infty} p(\tau)e^{-i\omega \tau}d\tau \times e^{-i\omega t_0}$$
$$= P(\omega)e^{-i\omega t_0}$$
$$\therefore p(t-t_0) = \int_{-\infty}^{\infty} P(\omega)e^{-i\omega t_0}e^{i\omega t}d\omega$$

De-dispersed pulse integration

- Gain the signal to noise ratio
 - Set the integration time for 50 us

TRIFFID System

MAMA camera

- Imaging system (1024 × 256 px)
- FoV is 28.5 arcsec (0.15 arcsec/px)

• Avalanche Photo Diodes (APD)

- Time-tag for each photon
- Connecting with each fiber