# COMPOSITE OCTET BARYONS IN NEUTRON STAR MATTER

KAITO NORO<sup>A,B</sup>, WOLFGANG BENTZ<sup>C</sup>, IAN C. CLOËT<sup>D</sup>, TERUYUKI KITABAYASHI<sup>C</sup>

GRADUATE SCHOOL OF SCIENCE AND TECHNOLOGY, TOKAI UNIVERSITY<sup>A</sup>, MICRO/NANO TECHNOLOGY CENTER, TOKAI UNIVERSITY<sup>B</sup>, DEPARTMENT OF PHYSICS, SCHOOL OF SCIENCE, TOKAI UNIVERSITY<sup>C</sup>, PHYSICS DIVISION, ARGONNE NATIONAL LABORATORY<sup>D</sup>

arXiv:2308.13179



### Introduction

- Structure of neutron stars
- ✓ <u>Outer Core</u>: Neutrons, Protons, Electrons
- ✓ Inner Core : Quarks?, Hyperons? Pions?
- Baryons : A composite particle made of three quarks.
- Baryons we will consider in this study:

p, n,  $\Sigma^-$ ,  $\Sigma^0$ ,  $\Sigma^+$ ,  $\Lambda$ ,  $\Xi^0$ ,  $\Xi^-$ 

### Our Study :

We use a quark-diquark description of octet baryons based on the Faddeev framework to examine the equation of state of neutron star matter in the relativistic mean field approximation.



(http://kakudan.rcnp.osaka-u.ac.jp/jp/overview/world/Flavor.html)

## Nambu-Jona-Lasinio (NJL) Model

- A quark model based on relativistic field theory.
- Contact interactions between quarks.
- We can describe hadrons (nucleons, mesons) as bound state of quarks.

## Flavor SU(3) NJL Model Lagrangian $\rightarrow$ 4-fermi interaction

 $\mathcal{L} = \overline{q}(i\partial - \widehat{m})q$ 

$$+G_{\pi}[(\bar{q}\lambda_a q)^2 - (\bar{q}\lambda_a\gamma_5 q)^2]$$

 $-G_{v}[(\bar{q}\lambda_{a}\gamma^{\mu}q)^{2}+(\bar{q}\lambda_{a}\gamma^{\mu}\gamma_{5}q)^{2}]$ 

 $+\mathcal{L}_{I}^{(qq)}$ 

 $\hat{m}$  : current quark mass matrix (= diag(m<sub>u</sub>, m<sub>d</sub>, m<sub>s</sub>))  $\lambda_a$  : Gell-Mann flavor matrices ( $a = 0, 1, 2, \dots, 8$ )

- ··· Kinetic term for quarks (u, d, s)
- $\cdots$  Lorentz scalar + pseudoscalar  $\overline{q}q$  channels
- $\cdots$  Lorentz vector + pseudovector  $\overline{q}q$  channels
- $\cdots$  Chiral invariant qq interaction channels



### qq interaction Lagrangian

$$\mathcal{L}_{I}^{(qq)} = G_{S} \left[ \left( \bar{q} \gamma_{5} C \lambda_{a} \lambda_{A}^{(c)} \bar{q}^{T} \right) \left( q^{T} C^{-1} \gamma_{5} \lambda_{a} \lambda_{A}^{(c)} q \right) - \left( \bar{q} C \lambda_{a} \lambda_{A}^{(c)} \bar{q}^{T} \right) \left( q^{T} C^{-1} \lambda_{a} \lambda_{A}^{(c)} q \right) \right] + G_{A} \left[ \left( \bar{q} \gamma_{\mu} C \lambda_{s} \lambda_{A}^{(c)} \bar{q}^{T} \right) \left( q^{T} C^{-1} \gamma_{\mu} \lambda_{s} \lambda_{A}^{(c)} q \right) - \left( \bar{q} \gamma_{\mu} \gamma_{5} C \lambda_{a} \lambda_{A}^{(c)} \bar{q}^{T} \right) \left( q^{T} C^{-1} \gamma^{\mu} \gamma_{5} \lambda_{a} \lambda_{A}^{(c)} q \right) \right]$$

 $G_S$  term : Scalar and pseudoscalar diquark channels

We include only scalar diquark : spin 0, antisymmetric in flavor  $\overline{3}_f$ .

 $G_A$  term : Axial-vector and vector diquark channels

We include only axial-vector diquark : spin 1, symmetric in flavor  $6_f$ .

$$\lambda_a$$
: antisymmetric Gell-Mann flavor matrices ( $a = 2,5,7$ )  
 $\lambda_s$ : symmetric Gell-Mann flavor matrices ( $s = 0,1,3,4,6,8$ )  
 $\lambda_A^{(c)}$ : antisymmetric Gell-Mann color matrices ( $A = 2,5,7$ )  
 $C$ : charge conjugation Dirac matrix ( $C = i\gamma_2\gamma_0$ )

4

### Flavor SU(3) NJL Model Lagrangian

$$\mathcal{L} = \bar{q}(i\partial - \hat{m})q$$
  
+ $G_{\pi}[(\bar{q}\lambda_{a}q)^{2} - (\bar{q}\lambda_{a}\gamma_{5}q)^{2}]$   
- $G_{\nu}[(\bar{q}\lambda_{a}\gamma^{\mu}q)^{2} + (\bar{q}\lambda_{a}\gamma^{\mu}\gamma_{5}q)^{2}]$   
+ $\mathcal{L}_{I}^{(qq)}$ 

- ··· Kinetic term for quarks (u, d, s)
- $\cdots$  Lorentz scalar + pseudoscalar  $\overline{q}q$  channels

5

- ... Lorentz vector + pseudovector  $\bar{q}q$  channels
- $\cdots$  Chiral invariant qq interaction channels

≻ $G_{\pi}$ : Reproduce pion decay constant  $f_{\pi} = 93$  [MeV] and the pion mass  $m_{\pi} = 140$  [MeV]. →  $G_{\pi} = 19.04$ GeV<sup>-2</sup>

≻  $G_v$ : Reproduce binding energy per-nucleon in symmetric nuclear matter  $E_B/A = 16$  [MeV] at saturation density of  $\rho_{B_0} = 0.15$  [fm<sup>-3</sup>]. →  $G_v = 6.03$  GeV<sup>-2</sup>

⇒  $G_S$ ,  $G_A$ : Reproduce the masses in vacuum of the nucleon (940 MeV) and the delta particle (1232 MeV) by using the Faddeev equation. →  $G_S = 8.76 \text{ GeV}^{-2}$ ,  $G_A = 7.36 \text{ GeV}^{-2}$ 

✓ Diquark

Two quarks which form a bound state inside a baryon.

ex) Proton (uud)



- [ud]u
  - $\rightarrow$  Scalar diquark (spin 0, isospin 0)
- {ud}u, {uu}d

 $\rightarrow$  Axial-vector diquark (spin 1, isospin 1)

Figure I. Feynman diagram of the Faddeev equation

Table I. Mass of the baryons in vacuum [MeV]

|       | Р     | n     | Σ+     | $\Sigma^0$ | $\Sigma^{-}$ | Λ      | E<br>E | [3]<br> - |
|-------|-------|-------|--------|------------|--------------|--------|--------|-----------|
| Calc. | 940.0 | 940.0 | 1168.5 | 1168.5     | 1168.5       | 1124.6 | 1318.7 | 1318.7    |
| Obs.  | 938.3 | 939.6 | 1189.4 | 1192.6     | 1197.7       | 1115.7 | 1314.9 | 1321.7    |

### Extended NJL Model

$$\mathcal{L} = \bar{q}(i\partial - \hat{m})q$$
  
+ $G_{\pi}[(\bar{q}\lambda_{a}q)^{2} - (\bar{q}\lambda_{a}\gamma_{5}q)^{2}]$   
- $G_{\nu}[(\bar{q}\lambda_{a}\gamma^{\mu}q)^{2} + (\bar{q}\lambda_{a}\gamma^{\mu}\gamma_{5}q)^{2}]$   
+ $\mathcal{L}_{I}^{(qq)}$ 



6-fermi interaction Lagrangian ('t Hooft, PRD (1976))

$$\mathcal{L}_6 = G_6 \det \left[ \bar{q}_{\alpha} (1 - \gamma_5) q_{\beta} + \bar{q}_{\alpha} (1 + \gamma_5) q_{\beta} \right]$$

G<sub>6</sub> : Reproduce the mass difference of η' and η mesons as 0.41 GeV.
 → G<sub>6</sub> = 1260 GeV<sup>-5</sup>

8-fermi interaction Lagrangian (Osipov et al., Ann. Phys. (2007))

$$\mathcal{L}_{8} = G_{8}^{(ss)}(\mathcal{L}_{s}\mathcal{L}_{s}) - G_{8}^{(sv)}(\mathcal{L}_{s}\mathcal{L}_{v}) - G_{8}^{(vv)}(\mathcal{L}_{v}\mathcal{L}_{v})$$

$$\succ G_{8}^{(ss)}, G_{8}^{(sv)}, G_{8}^{(vv)} : \text{Free parameters for now, but not to spoil the saturation properties of isospin symmetric nuclear matter.}$$

### Extended NJL Model

$$\mathcal{L} = \bar{q}(i\partial - \hat{m})q$$

$$+ G_{\pi}[(\bar{q}\lambda_{a}q)^{2} - (\bar{q}\lambda_{a}\gamma_{5}q)^{2}]$$

$$- G_{\nu}[(\bar{q}\lambda_{a}\gamma^{\mu}q)^{2} + (\bar{q}\lambda_{a}\gamma^{\mu}\gamma_{5}q)^{2}]$$

$$+ \mathcal{L}_{1}^{(qq)}$$
6-fermi interaction Lagrangian ('t Hooft, PRD (1976))  

$$\mathcal{L}_{6} = G_{6} \det[\bar{q}_{\alpha}(1 - \gamma_{5})q_{\beta} + \bar{q}_{\alpha}(1 + \gamma_{5})q_{\beta}]$$

$$\geq G_{6}$$
: Reproduce the mass difference of  $\eta'$  and  $\eta$  mesons as 0.41 GeV.  

$$\rightarrow G_{6} = 1260 \text{ GeV}^{-5}$$
Case 2  
8-fermi interaction Lagrangian (Osipov et al., Ann. Phys. (2007))  

$$\mathcal{L}_{8} = G_{8}^{(ss)}(\mathcal{L}_{s}\mathcal{L}_{s}) - G_{8}^{(sv)}(\mathcal{L}_{s}\mathcal{L}_{\nu}) - G_{8}^{(vv)}(\mathcal{L}_{\nu}\mathcal{L}_{\nu})$$
Case 3

> 
$$G_8^{(ss)}, G_8^{(sv)}, G_8^{(vv)}$$
: Free parameters for now, but not to spoil the saturation properties of isospin symmetric nuclear matter.

### Equation of state

From the first law of thermodynamics,

$$\mathcal{E} = -P + \sum_{\alpha=b,l} \mu_{\alpha} \rho_{\alpha}$$

 $\mathcal{E}$  : energy density, P : pressure  $\alpha$  : Baryons and leptons (e,  $\mu$ )  $\mu_{\alpha}$  : Chemical potentials,  $\rho_{\alpha}$  : Density for each particle

#### 4-fermi interaction only

The total energy density in the mean field approximation is expressed as

$$\mathcal{E} = \mathcal{E}_{\text{vac}} - \frac{\omega_q^2}{8G_v} + 2G_v\rho_q^2 + \mathcal{E}_B + \mathcal{E}_l$$

 $\mathcal{E}_{vac}$ : Vacuum term of constituent quarks (u, d, s)  $\mathcal{E}_B$ : Baryon kinetic term (Baryons moving in mean scalar and vector fields)  $\mathcal{E}_l$ : Lepton kinetic terms  $\omega_q$ : vector mean fields ( $\omega_u$ ,  $\omega_d$ ,  $\omega_s$ ),  $\omega_q = 4G_v \langle q^{\dagger}q \rangle$  $\rho_q$ : quark densities ( $\rho_u$ ,  $\rho_d$ ,  $\rho_s$ )  $G_v$ : 4-fermi coupling constant

### Equation of state

#### 4+6+8-fermi interaction

The total energy density in the mean field approximation is expressed as

$$\mathcal{E} = \mathcal{E}_{\text{vac}} - \frac{\omega_q^2}{8G_v} + 2G_v\rho_q^2 + \mathcal{E}_B + \mathcal{E}_l + \mathcal{E}_6 + \mathcal{E}_8$$

The new contributions from 6-fermi and 8-fermi interactions to the energy density are

$$\mathcal{E}_{6} = -\frac{G_{6}}{16G_{\pi}^{3}}(\sigma_{u}\sigma_{d}\sigma_{s} - \sigma_{u0}\sigma_{d0}\sigma_{s0})$$
$$\mathcal{E}_{8} = \frac{3G_{8}^{(ss)}}{64G_{\pi}^{4}}\left(\sigma_{q}^{2}\sigma_{q'}^{2} - \sigma_{q0}^{2}\sigma_{q'0}^{2}\right) - \frac{3G_{8}^{(sv)}}{64G_{\pi}^{2}G_{\nu}^{2}}\sigma_{q}^{2}\omega_{q'}^{2} - \frac{3G_{8}^{(\nu\nu)}}{64G_{\nu}^{4}}\omega_{q}^{2}\omega_{q'}^{2}$$

 $\sigma_q$  : scalar mean fields  $(\sigma_u, \sigma_d, \sigma_s), \sigma_q = 4G_{\pi} \langle \bar{q}q \rangle$  $\sigma_{q0}$  : vacuum values of scalar mean fields  $(\sigma_{u0}, \sigma_{d0}, \sigma_{s0})$ 

Scalar and vector mean fields are determined by the conditions

$$\frac{\partial \mathcal{E}}{\partial \sigma_q} = \frac{\partial \mathcal{E}}{\partial \omega_q} = 0$$

under the requirements of chemical equilibrium and charge neutrality.

### Numerical results for equation of state

4+6+8-fermi interactions



Figure 2. Relation between baryon density and pressure in neutron star matter.

Table 2. Values of the 6-fermi coupling constant  $G_6$  in units of GeV<sup>-5</sup>, and the 8-fermi coupling constants  $G_8^{(ss)}$  and  $G_8^{(vv)}$  in units of GeV<sup>-8</sup>. The coupling  $G_8^{(sv)}$  is set to zero in all three cases.

|        | <i>G</i> <sub>6</sub> | <b>G</b> <sup>(SS)</sup><br><b>G</b> <sup>8</sup> | $G_8^{(vv)}$ |
|--------|-----------------------|---------------------------------------------------|--------------|
| Case I | 0                     | 0                                                 | 0            |
| Case 2 | 1260                  | 0                                                 | 0            |
| Case 3 | 1260                  | 2330                                              | 1220         |

### Numerical results for equation of state

4+6+8-fermi interaction



Threshold densities

- $\mu$  : 0.22 fm<sup>-3</sup>
- $\Sigma^{-}$  : 0.35 fm<sup>-3</sup>

Others : higher densities

Figure 3. Particle densities for case 1.

### Numerical results for neutron stars

4+6+8-fermi interactions



Figure 4. Relation between star mass and radii.

Predicted star mass including hyperons is too low compared to the observed mass.  $\rightarrow$  "Hyperon Puzzle"

Table 3. Values of the central baryon densities  $\rho_B^{max}(r=0)$  in units of fm<sup>-3</sup>, star masses  $M_{star}^{max}$  in units of M<sub> $\odot$ </sub>, and the radii of the stars R in units of km, which gives the maximum star mass.

|        | $\rho_B^{max}(r=0)$ | M <sup>max</sup><br>star | R    |
|--------|---------------------|--------------------------|------|
| Case I | 0.72                | 1.73                     | 12.3 |
| Case 2 | 0.8                 | 1.62                     | 11.9 |
| Case 3 | 1.4                 | 1.72                     | 9.8  |

### Numerical results for neutron stars

4+6+8-fermi interactions



Figure 5. Relation between central baryon density and star mass.

## Summary

- We designed our mean field approximation so that it reflects the basic symmetries of the model and their dynamical breakings, regardless of possible disagreements with the observations.
- Hyperon puzzle persists in the NJL model for composite octet baryons in the mean field approximation, and 6-fermi and 8-fermi interactions do not solve the problem.
- A special kind of 8-fermi interaction can support stable stars up to 1.7 solar masses over a large region of densities.

16

### **Backup Slides**

7

Chiral invariant interaction Lagrangian  $\mathcal{L}_{I}^{(qq)} = G_{S} \left[ \left( \bar{q} \gamma_{5} C \lambda_{a} \lambda_{A}^{(C)} \bar{q}^{T} \right) \left( q^{T} C^{-1} \gamma_{5} \lambda_{a} \lambda_{A}^{(C)} q \right) - \left( \bar{q} C \lambda_{a} \lambda_{A}^{(C)} \bar{q}^{T} \right) \left( q^{T} C^{-1} \lambda_{a} \lambda_{A}^{(C)} q \right) \right] \\ + G_{A} \left[ \left( \bar{q} \gamma_{\mu} C \lambda_{s} \lambda_{A}^{(C)} \bar{q}^{T} \right) \left( q^{T} C^{-1} \gamma_{\mu} \lambda_{s} \lambda_{A}^{(C)} q \right) - \left( \bar{q} \gamma_{\mu} \gamma_{5} C \lambda_{a} \lambda_{A}^{(C)} \bar{q}^{T} \right) \left( q^{T} C^{-1} \gamma^{\mu} \gamma_{5} \lambda_{a} \lambda_{A}^{(C)} q \right) \right] \\ G_{S} \text{ term : Scalar and pseudoscalar diquark channels} \\ \text{We include only scalar diquark : spin 0, antisymmetric in flavor } \bar{3}_{f}.$ 

 $G_A$  term : Axial-vector and vector diquark channels

We include only axial-vector diquark : spin 1, symmetric in flavor  $6_f$ .



- $\rightarrow$  Two quarks which bind inside a baryon
- ex) Proton (uud)
- [ud]u  $\rightarrow$  Scalar diquark (spin 0, isospin 0)
- {ud}u, {uu}d

 $\rightarrow$  Axial-vector diquark (spin 1, isospin 1) Figure 1. Feynman diagram of the Feddeev equation

18

Chiral invariant interaction Lagrangian

$$\mathcal{L}_{I}^{(qq)} = G_{S}\left[\left(\bar{q}\gamma_{5}C\lambda_{a}\lambda_{A}^{(C)}\bar{q}^{T}\right)\left(q^{T}C^{-1}\gamma_{5}\lambda_{a}\lambda_{A}^{(C)}q\right) - \left(\bar{q}C\lambda_{a}\lambda_{A}^{(C)}\bar{q}^{T}\right)\left(q^{T}C^{-1}\lambda_{a}\lambda_{A}^{(C)}q\right)\right]$$

 $+G_{A}\left[\left(\bar{q}\gamma_{\mu}C\lambda_{s}\lambda_{A}^{(C)}\bar{q}^{T}\right)\left(q^{T}C^{-1}\gamma_{\mu}\lambda_{s}\lambda_{A}^{(C)}q\right)-\left(\bar{q}\gamma_{\mu}\gamma_{5}C\lambda_{a}\lambda_{A}^{(C)}\bar{q}^{T}\right)\left(q^{T}C^{-1}\gamma^{\mu}\gamma_{5}\lambda_{a}\lambda_{A}^{(C)}q\right)\right]$ 

 $G_S$  term : Scalar and pseudoscalar diquark channels

We include only scalar diquark : spin 0, antisymmetric in flavor  $\overline{3}_{f}$ .

 $G_A$  term : Axial-vector and vector diquark channels

We include only axial-vector diquark : spin 1, symmetric in flavor  $6_f$ .

Table 1. Mass of the baryons in vacuum [MeV]

|       | Р     | n     | Σ+     | Σ <sup>0</sup> | Σ-     | Λ      | 0<br>E | <br>[2] |
|-------|-------|-------|--------|----------------|--------|--------|--------|---------|
| Calc. | 940.0 | 940.0 | 1168.5 | 1168.5         | 1168.5 | 1124.6 | 1318.7 | 1318.7  |
| Obs.  | 938.3 | 939.6 | 1189.4 | 1192.6         | 1197.7 | 1115.7 | 1314.9 | 1321.7  |

### Numerical Results

4-fermi interaction only



Star mass with hyperons is too low compared to the observation of heavy star.  $\rightarrow$  "Hyperon Puzzle"

Figure 7. Relation between star mass and radii.