Superfluid and Finite-Temperature Extensions of Self-Consistent Band Theory for the Inner Crust of Neutron Stars Tokyo Institute of Technology For N.S. Workshop2023 Kenta Yoshimura

INTRODUCTION Neutron star is what?

Neutron star : a remnant of supernova

- densities : $\sim 5\rho_0$
- temperatures : \sim keV
- mag. field : $\sim 10^{18}$ G
- rotation period : \sim ms

A frontier of theoretical physics

The "Pasta Structures"

At the bottom of "crust" area, nuclei form crystalline structures?

NUMERICAL RESULT

From typical results, we can see

1 Neutrons are excessively dripped and distributed uniformly 2n's pairing is almost uniform, p have superconductivity. ③Quasi-particle energies form band structure

Observation data indicates that periods of neutron stars irregularly rebound, which is called <u>"glitch</u>" phenomena.

It is advocated that pasta phases and there dripped neutrons are the cause.

They are called "pasta" phases, and we need micro. Calculations using **band theory**. Nuclear pasta is said to be deeply related to "pulsar glitch".

https://www2.kek.jp/imss/cmrc/other/workshop20190114/14-5 iida.pdf YEAR 1975 Four glitches of the Vela .089250 - pulsar (Downs (1981)) .089240 -2.8yr 089230 .089220 .089210 2000 3000 JULIAN DATE- 2440000.5

Our Research Target

 Formulate superfluid self-consistent calculations combined with **band theory**, for quantitative interpretation of glitch.

Neutrons' "<u>effective masses</u>" are always less than bare mass, which means conduction of neutrons is "enhanced" by band structures, which is called "<u>anti-entrainment</u>".

	Superfluid (TD)DFT			Normal (TD)DFT		
n_{b}	$n_n^{ m f}/ar{n}_n$	$n_n^{ m c}/ar{n}_n$	m_n^\star/m_n^\oplus	$n_n^{ m f}/ar{n}_n$	$n_n^{ m c}/ar{n}_n$	m_n^\star/m_n^\oplus
0.04	0.702	0.893	0.785	0.710	0.876	0.810
0.05	0.684	0.913	0.749	0.697	0.896	0.778
0.06	0.609	0.933	0.652	0.608	0.911	0.668
0.07	0.555	0.954	0.582	0.555	0.929	0.598

FURTHER EXTENSION

We can straightforwardly extend those calculations into finite temperature systems, and investigate their thermal properties.

• For now, we focus on 1-dim. crystalline structure (slab), for them perform calculations, and tackle several extensions.

FORMALISM **Density Functional Theory (DFT)**

Assuming that we have the total energy as a function of density :

$$\mathcal{E}_{ ext{total}} = \int \mathrm{d} \boldsymbol{r} \mathcal{H}(\boldsymbol{r})$$

and the g.s. is given by variational condition : $\frac{\delta \mathcal{H}}{\delta \phi^*(\boldsymbol{r})} = 0$
It returns to Sch. like Eq. : $\left[\frac{\hbar^2}{2m} \boldsymbol{\nabla}^2 + v_{ ext{KS}}[n]\right] \psi_k(\boldsymbol{r}) = \varepsilon_k \psi_k(\boldsymbol{r})$

Hartree-Fock-Bogoliubov Theory (HFB)

For description of pairing, we consider those "quasi-particle" : $\hat{\beta}_{\mu} = \sum \left(U_{i\mu}^* \hat{a}_i + V_{i\mu}^* \hat{a}_i^\dagger \right) \quad \hat{\beta}_{\mu}^\dagger = \sum \left(U_{i\mu} \hat{a}_i^\dagger + V_{i\mu} \hat{a}_i \right)$

> and employ the Bogoliubov-de-Gennes equation : $() \quad (a) \quad (b) \quad (c) \quad (c)$

Tracing energies with respect to temperatures, we can get the "specific heat" of slab phase, and critical temperatures.

SUMMARY and PROSPECT Summary

$$\begin{pmatrix} h_q(\boldsymbol{r}) - \lambda & \Delta(\boldsymbol{r}) \\ \Delta^*(\boldsymbol{r}) & -\hat{h}_q^*(\boldsymbol{r}) + \lambda \end{pmatrix} \begin{pmatrix} u_{\nu}^{(q)}(\boldsymbol{r}) \\ v_{\nu}^{(q)}(\boldsymbol{r}) \end{pmatrix} = E_{\nu} \begin{pmatrix} u_{\nu}^{(q)}(\boldsymbol{r}) \\ v_{\nu}^{(q)}(\boldsymbol{r}) \end{pmatrix}$$

Band Theory

According Bloch's theorem, the wfs are decomposed into $\phi(\boldsymbol{r}) = e^{i \boldsymbol{k} \cdot \boldsymbol{r}} \tilde{\phi}(\boldsymbol{r})$ where $\tilde{\phi}(\boldsymbol{r} + \boldsymbol{T}) = \tilde{\phi}(\boldsymbol{r})$ For 1-dimensional crystalline structures, it turns to be $\tilde{\phi}(\boldsymbol{r}) = \tilde{\phi}(z)$ $\boldsymbol{k} = (k_{\parallel}, k_z)$

Combining these 3 theories, finally we have

$$\begin{pmatrix} \hat{h}_q(z) + \hat{h}_k(z) - \lambda & \Delta(z) \\ \Delta^*(z) & -\hat{h}_q^*(z) - \hat{h}_k(z) + \lambda \end{pmatrix} \begin{pmatrix} u_{\nu \mathbf{k}}^{(q)}(z) \\ v_{\nu \mathbf{k}}^{(q)}(z) \end{pmatrix} = E_{\nu \mathbf{k}}^{(q)} \begin{pmatrix} u_{\nu \mathbf{k}}^{(q)}(z) \\ v_{\nu \mathbf{k}}^{(q)}(z) \end{pmatrix}$$

- We realized ①superfluid②self-consistent③band calculations and perform them for various systems under β equilibrium. • We clarify diverse properties of pasta nuclei, e.g. anti-entrainment, phase transitions and nuclear melting. **Future Works**
- Investigation of cooling of "proto neutron stars" by calculations of "Neutrino-pasta scattering" (now trying!) • Calculations of structures of "magnetars" with $\sim 10^{18}$ G, by extensions into finite-magnetic field systems (almost done!)
- Final goal : applications for all pasta structures, and reveal anti-entrainment and Equation of State systematically.