~中性子星の観測と理論~研究活性化ワークショップ 2023 @Kyoto 6-8 Sept. 2023

中性子星の熱的進化とパルサーの回転進化 野田常雄 (久留米工業大学)

Introduction Neutron star cooling and rotation Superfluidity affects Neutron Star Cooling Superfluidity also affects the rotation of the star **Concurrent calculations of cooling and rotation of neutron** stars allows comparison with pulsar spin-downs.

Adding rotational effects with cooling models

Cooling of Neutron Stars

Neutrino

Emission

Cooling processes of NS strongly depend on the interior state

- Normal nuclear matter
- π condensation
- K condensation
- Quark matter
- Superfluidity etc...

etc... **Exotic phase** appears in high density state, **cools star rapidly** Central density above the threshold density = Heavy NS

Central density above the threshold density = Heavy NS

Comparing the calculation results and isolated NS observation ⇒ Constraining the high-density state

(TN+ 2006)

6.4

Neutrino Emission

- Occurring in all NS (**Standard**)
 - Modified URCA: Weak
 - Nucleon superfluidity: Marginally Strong (at transition)
- Occurring in heavy NS (Exotic)
 - Quark β-decay (Considering Quark Matter): Strong
 - Direct URCA ($y_p < 1/9$): **Strong**
- Superfluidity, Superconductivity
 - Neutrino emission at transition
 - Superfluid state suppresses Other Neutrino Emission
 → mild the "Strong" emission

Effects of Superfluidity on cooling

- Superfluidity has 2 effects on cooling
 - Transition from Normal to Super: Neutrino emission (Accelerate cooling)
 - After the transition: Suppression other Neutrino emission processes (Decelerate cooling)
- Neutron ³P₂
 - The density dependence of the critical temperature determine the cooling history of neutron stars.

Shternin et al. 2011

Models

- EoS with Maximum mass above $2M_{\odot}$
 - Brueckner-Hartree-Fock (HM) + Dyson-Schwinger (QM)
 - Mixed phase between HM-QM (Yasutake+ 2016)

Even at the maximum mass, the centre is mixed phase

- Surface composition: ⁵⁶Fe
- Cooling processes
 - Modified URCA + Bremsstrahlung
 - n-Super(${}^{1}S_{0}, {}^{3}P_{2}$), p-Super(${}^{1}S_{0}$)
 - Direct URCA $(y_p > 1/9)$
 - Quark Cooling with Colour Superconductivity (CSC)
- Parameters
 - Masses
 - n, d- ³P₂ Superfluidity Critical Temperature
 - CSC Paring (CFL / 2SC / 2SC+X)

Pairing of Quarks

- CSC in quark matter has **Multiple parings**
 - Degrees of freedom of colour and flavour
- CFL (Colour Flavour Locking · Higher density X)
 - All colous and flavours can make pairs
 - All quarks (RGB) in superconducting → Suppressing neutrino emission√
- **2SC** (Two Flavour Superconductivity <u>Lower density</u>√)
 - 2 of colours/flavours can make pairs
 - 1/3 of normal quark remains → Strong neutrino emission X

Quark-Hadron Continuity

Neutron ${}^{3}P_{2} \rightarrow \text{Quark} \, {}^{3}P_{2} + 2\text{SC}$ Continuous transition (Fujimoto+ PRD 101, 094009, (2020)) • Neutron ${}^{3}P_{2}$ has been continued by d-quarks \rightarrow Other can make 2SC

- All quarks can make pairs
- Suppressing neutrino emission in 2SC (2SC+X)

• Assumption: Critical temperature of Neutron ${}^{3}P_{2}$ is carried by d-quark's ${}^{3}P_{2}$

- No effects for proton ${}^{1}S_{0}$
- \varDelta of 2SC / CFL are few tens of MeV
- No s-quarks

- Neutrons and protons become superfluid Neutron: ¹S₀, ³P₂
 Proton: ¹S₀
- Critical temperature (*T*_{cr})

• Functionated density dependence

Effects on Cooling

Superfluid transition: **Strong cooling (PBF)** (Page+ 2004)

Superfluid state: Suppresses other neutrino emission

- n- ${}^{3}P_{2}$ critical temperature is continued by 2SC+X
- Calculating with changing the n, $d-{}^{3}P_{2}$ model

Nucleon Superfluidity

Cooling Results

- Cooling behaviour depends on hadron superfluidity models
- Quark pairing affects cooling curves.

Checking superfluid cooling models with other superfluid phenomena.

Summary of Neutron Star Cooling

- Rapid cooling in 2SC \rightarrow Too cold X
 - Appearing density√
- Marginal cooling with CFL (depending n- ${}^{3}P_{2}$ critical temperature) \rightarrow Observation \checkmark
 - Appearing density does NOT match X
- 2SC+X is similar to CFL (depending <u>n</u>, d ${}^{3}P_{2}$ critical temperature) \rightarrow Observation \checkmark
 - Appearing density√
- Show the effect on rotation following the method of Ho & Andersson(2012)

nature physics

LETTERS PUBLISHED ONLINE: 30 SEPTEMBER 2012 | DOI: 10.1038/NPHYS2424

Rotational evolution of young pulsars due to superfluid decoupling

Wynn C. G. Ho* and Nils Andersson*

Cooling Pulsar Evolution

- 1. As the neutron star cools, the region of superfluidity increases
- 2. Decreased moment of inertia in the normal state region
- 3. Spin-down due to magnetic dipole radiation changes with decreasing moment of inertia
- 4. Line in $P \dot{P}$ Diagram bends
- Settings
 - Superfluid Model A(Solid) and D(Dashed)
 - Superfluid state region does not affect rotation
 - Friction is small and constant between super and normal
 - Color superconducting regions are treated in the same way as nucleon superfluidity

Variation of moment of inertia / rotation

Moment of inertia

- General relativistic sphere moment of inertia
 - Exact relation: Ravenhall & Pethick (1994)

$$I = \frac{8\pi}{3} \int_0^R (\rho + P/c^2) \Lambda r^4 dr$$
$$\Lambda = \left(1 - \frac{2Gm}{c^2 r}\right)^{-1}$$

Calculate normal layer only

Rotation

• Angular velocity variation considering magnetic dipole radiation $\frac{d\Omega}{dt} = (\Omega_{SF} - \Omega) \frac{1}{I} \frac{dI}{dt} - \frac{\beta \Omega^3}{I}$ $\beta \simeq B^2 R^6 / 6c^3$ $\Omega_{SF} - \Omega \leq 1.0 \times 10^{-6}$

Parameters: Initial value of $B \& \Omega$ (P, B) = (0.02 s, 5 × 10¹² G)

 $P - \dot{P}$ Diagram differs to previous research (Ho&Andersson) • Rise timing of \dot{P}

Time variation of moment of inertia

Evolutional tracks of the momentum inertia differ to the previous research (Ho&Andersson)

The reason of the time variation of moment of inertia

Ho & Andersson (2012)

- Superfluid model with "shallow" component
- Outer layer of core: Superfluid from the beginning
 - Moment of inertia decreases in early stage
- Curves rise in $P \dot{P}$ Diagram in early stage

Ours

- Superfluid transition starts from the centre of the core
- Superfluid region increases by time
- When the superfluid region expands to a certain level, the moment of inertia is greatly reduced.
- Curves rise in $P \dot{P}$ Diagram in late stage

Critical temperatures slightly outside the centre are effective on moment of inertia

Shallow Component of ${}^{3}P_{2}$

- Including "Shallow Component" to ³P₂ superfluidity
- Rise of $\overline{P \dot{P}}$ curve can be replicated

- With Shallow component, $P \dot{P}$ curve rises at early stage.
- Cooling curves also change

Summary of Pulsar Evolution

- Calculate the pulsar evolution based on the cooling calculation of neutron stars
 - Magnetic dipole radiation
 - Time variation of Momentum of Inertia by superfluid transition $\Rightarrow P \dot{P}$ Diagram
- Results of current model slightly differ from Ho & Andersson (2012)
 - $P \dot{P}$ Diagram: Variation timing of \dot{P}
 - Momentum of Inertia: Decrease timing of the momentum of inertia $\rightarrow P \dot{P}$ Diagram
 - Difference of superfluid model
- Variation timing of the momentum of inertia of entire star
 - Depends on neutron ³P₂ superfluid critical temperature in outer layer, not centre
 - Observation of rise timing of $P \dot{P}$ Diagram to upper right may constrain the "tail" of the critical temperature of neutron ${}^{3}P_{2}$?