中性子星NS1987Aの温度観測 から何がわかるか?

土肥 明 (理研ABBL · iTHEMS)

共同研究者

Emanuele Greco(INAF), 長瀧重博(理研, OIST), 小野勝臣(中央研究院) Marco Miceil(INAF), Salvatore Orlando(INAF), Barbara Olmi(INAF) 猪谷大輔(慶応大), 関野裕太(理研), 田島裕之(東大)

~中性子星の観測と理論~ 研究活性化ワークショップ 2023

本日のお品書き

O 導入:NS 1987Aの可能性

近年の ALMA観測を説明するシナリオ:

 O PWN87A(非熱的放射)シナリオ Greco+AD et al. 2021 ApJ 908 L45, 2022 ApJ 931 132
 O NS87A(熱的放射)シナリオ AD et al. 2023 ApJ 949 97

NS87Aのシナリオからわかること:

○応用:クラスト物質の性質解明へ

AD et al., in prep.

NS 1987Aの可能性

超新星 1987A (SN1987A)

https://public.nrao.edu/news/alma-finds-possible-sign-of-neutron-star-in-supernova-1987a/

- 1987年に大マゼラン雲に出現したII型超新星。
- ・いくつかの観測より、中心天体(CCO)が中性子星 (NS 1987A)であると思われている。

NS 1987Aの間接的観測

3重構造の星雲とFe, Ni等
 のclumpy領域の観測

—> 中性子星の表面付近の重 元素を反映か?

(Harada+in prep. Sotani, Nishimura, Naito PTEP 2022 041D0 (2022))

O blobの光度: $L_{\text{bol,obs}} = (26 - 90) L_{\odot}$

Cigan et al. ApJ 886 51 (2019) Page et al. ApJ 898 125 (2020)

○熱源の起源として有力説は2つ:

- パルサーのスピンダウンによる非熱的放射(PWN87Aシナリオ)
- ・ Greco+AD et al. 2021 ApJ 908 L45, 2022 ApJ 931 132 • NS表面からの熱的放射(NS87Aシナリオ) AD et al. 2023 ApJ 949 97

PWN87Aシナリオ

イメージ (NS87Aシナリオでもほぼ一緒)

https://airandspace.si.edu/multimedia-gallery/nasa-photohjpg (©Smithsonian Instituion)

https://skfb.ly/6XZIU (© S. Orlando)

SN 1987Aの"標準"モデル+Power-law成分

- Chandra ACIS-SとNuSTAR、
 XMM-Newtonのスペクトルを使用
- ・"標準"モデル:星間吸収 (TBabs) + 2成分プラズマ(vnei*vnei)
- NS 1987AがPWNとして、スピン
 ダウンに伴う非熱的放射、power-

law成分 (pow)を加える。

エジェクタの吸収を受けるのでその 柱密度+化学組成が必要

→SN 1987AのMHDモデルを採用

$w\!\!/\,\text{pow}$ (inc. MHD)

Spectral Fitting

- データ: Chandra/ACIS-S, XMM-Newton/ pn, RGS, and NuSTAR/FPMA,B
- (エジェクタ吸収を含む) Power-law成分
 を考慮するとNuSTARの観測を説明可能!
- しかし、2020年の観測では別にPower-law
 成分がなくてもよい。 (See also Alp et al. 2021, 2022)

-> よりPower-law成分が吸収されたとする と、SNRの自由膨張モデル($\rho_{ejecta} \propto t^{-3}$)と 矛盾。PWN87Aからの放射の時間変化? 或い は違うシナリオかも?(NS87Aシナリオ???)

観測光度から推定されるPP関係

 $L_{\text{syn},37} = L/(10^{37} \text{ erg s}^{-1}) \quad \dot{E}_{\text{syn},37} = \dot{E}/(10^{37} \text{ erg s}^{-1})$

NS87Aシナリオ

SN 1987Aの"標準"モデル+Blackbody成分

- ・ ALMA → 表面がrichであるべき(44Tiの崩壊熱など他の熱源にもよる)
- 本研究で得られたLynx観測限界→検出の有無で制限の傾向が逆
 (検出されない場合はALMAと逆で、強い制限 → V_{kick}~700 km/s ?!)

LynxによるNS1987Aの検出可能性

- *v*_{kick}が小さい方がLynxに受かりやすい。
- 中性子超流動モデルが強いモデルだとやや受かりにくい。。

応用: クラスト物質解明へ (Preliminaryな内容なので省略)

まとめ

まとめ

- o ALMAによるSN 1987Aのブローブ観測を元に、CCO の正体が何であるかを探った。
- ・PWN87Aシナリオ:現地点では最もうまく説明可能。
- ・NS87Aシナリオ:現地点ではあまり期待できないが、 2040年代にはLynxにより熱的X線が見える可能性大
- 。NS87Aシナリオで中性子星のクラスト物質の性質を現 在探っている。物性・原子核の観点でクラストで起こり そうな面白い物理があればぜひ教えてください。
- o 今後:EOS(コア・インナークラスト)の不定性によるNS87Aシナリオの変更可能性の追求

補足スライド

どのような加熱機構が考えられるか? **ONS or BH**が由来: ISMからの降着による重力解放 Maybe Impossible $->L_{\rm acc}>26L_{\odot} \Leftrightarrow \dot{M}>1.2\times10^{-11} \left(R_{\rm NS}/10\rm{km}\right) \left(M_{\rm NS}/M_{\odot}\right)^{-1}M_{\odot}~\rm{yr}^{-1}$ Bondi降着ならISMの数密度が $n_{ISM} \sim 10^4 \text{ cm}^{-3}$ 以上必要。伴星なしでは 難しい $\dot{M}_{Bondi} \approx 6 \times 10^{-15} \left(\frac{M_{CCO}}{M_{\odot}} \right)^2 \left(\frac{n_{ISM}}{1 \text{ cm}^{-3}} \right) \left(1 + \left(\frac{v}{10^5 \text{ cm s}^{-1}} \right)^2 \right)^{-3/2} M_{\odot} \text{ yr}^{-1} \text{ Shapiro & Teukolsky (1983)}$ Wijingaarden et al. MNRAS 484, 974 (2019) ○ 核燃焼が由来、特に、⁴⁴Ti崩壊(半減期85年) Partially Possible Optical depthがO(1)になるためには、Tiが $0.77M_{\odot}$ 必要。一方観測は、 ~ 1.5×10⁻⁴M₀でdisfavored。非常にclumpyなTi雲があればblobに効く (Alp et al. 2021) (Jerkstrand et al. 2011, Boggs et al. 2015) **O**NSが由来: Possible

- パルサーのスピンダウンによる非熱的放射(PWN87Aシナリオ)
 Greco+AD et al. 2021 ApJ 908 L45, 2022 ApJ 931 132
- NS表面からの熱的放射(NS87Aシナリオ)

Page et al. 2020 ApJ 898 125, AD et al. 2023 ApJ 949 97

- SN 1987Aの、 標準"モデル e.g., See Greco et al. 2022 ApJ 931 132
 - ・Chandra ACIS-Sのスペクトルを使 用
 - Fittingモデル:星間吸収 (TBabs)
 + 1(2)成分プラズマ (vnei)
 - 2温度vneiの方が観測と合う。

	1 3 中中		
	「温渂 vnei	2温度vnei	
温度(keV)	$1.9^{+0.3}_{-0.2}$	$0.7^{+0.2}_{-0.3}$	$2.6^{+0.9}_{-0.5}$
金属量	$0.19\substack{+0.07 \\ -0.05}$	$0.24^{+0.16}_{-0.10}$	1成分目 と同じ
電離パラメー タ(10 ¹¹ s/cc)	$0.41^{+0.15}_{-0.10}$	> 1	$0.8^{+0.5}_{-0.3}$
EM (10 ⁵⁸ /cc)	1.1 ± 0.2	1.0 ± 0.6	$0.6^{+0.3}_{-0.2}$
X ² (d.o.f)	49.98(44)	32.99(41)	

NS 1987AがLynxで検出されなかった場合

クラスト超流動が弱いとき
 クラスト超流動が強いとき

vkick~700 km/s?! (ALMA観測の上限値)

NS 1987AがLynxで検出された場合

・クラスト超流動が弱いとき ・クラスト超流動が強いとき

あまりVkickに依らない(ALMAの観測が支配的)

- Direct Urca: $p + e \rightarrow n + \nu_e$, $n \rightarrow p + e + \bar{\nu}_e$
- 陽子がある程度の割合(>1/9)いると発生。非常に強い冷却源。
- If taking fiducial value $L \approx 60 \text{ MeV} \rightarrow M_{\text{DU}} \approx 1.6 M_{\odot}$ (SN87Aのlight curveからの制限の上限くらい。)

クラスト内の物質に関して

- ONS 1987Aの光度観測より、クラスト物質の性質を探ることができる。具体的には、
- ${}^{1}S_{0}$ 中性子超流動の強さ
- ${}^{1}S_{0}$ 中性子超流動のFluctuationの強さ
- クラスト内のイオン結晶の比熱、熱伝導率
- パスタ構造
- 不純物

Modified from Page et al., Oxford Univ. Press (2013)