1D GRPIC Simulations of High-Energy Gamma Rays from BH Magnetospheres

ー般相対論的プラズマ粒子シミュレーションによる ブラックホール磁気圏強電場領域由来 ガンマ線放射の研究

Presenter: Koki Kin (Tohoku U. D1)

with Shota Kisaka (Hiroshima U.), Shigeo S. Kimura (FRIS, Tohoku U.), Kenji Toma (FRIS, Tohoku U.), and Amir Levinson (Tel Aviv U.)

> Neutron Star Observation and Theory Workshop 2023 2023.9.8 @ Kyoto University

Theoretical Astrophysics Tohoku University

Contents

© Current Structure · Charge Distribution of Pulsar/BH Magnetospheres

© Formation of "Spark Gap" in BH Magnetospheres

 My Current Research: 1D GRPIC Simulation of Stellar-Mass BH Magnetospheres
 Ma

- Simulation Setting
- Simulation Result
- Semi-Analytic Model of Gamma-Ray Emission from Gap

© Summary

Current Structure · Charge ^{2/13} Distribution of Pulsar Magnetospheres Goldreich & Julian 1969

• plasma injection from NS / via $\gamma B \cdot \gamma \gamma$ interactions

• **co-rotation** of NS, axisymmetrical B-field, plasma ($\Omega_s = \Omega_F$)

NS rotation energy → **steady plasma flow**

maintaining j_p

 $S_{p} = \frac{1}{4\pi} E \times B_{\varphi} = -\frac{1}{4\pi} R \Omega_{F} B_{\varphi} B_{p} \qquad "p_{\partial t}^{\partial} \left(\frac{E^{2} + B^{2}}{8\pi^{N}} \right) d" \nabla \cdot \left(\frac{c}{4\pi} E \times B \right)$

"unipolar induction"

Current Structure · Charge ^{2/13} Distribution of Pulsar Magnetospheres Goldreich & Julian 1969

• plasma injection from NS / via $\gamma B \cdot \gamma \gamma$ interactions • co-rotation of NS, axisymmetric B-field, plasma ($\Omega_s = \Omega_F$) NS rotation energy \rightarrow steady plasma flow maintaining j_p

 $S_p = \frac{1}{4\pi} E \times B_{\varphi} = -\frac{1}{4\pi} R \Omega_F B_{\varphi} B_p$ "pulsar wind"

• Goldreich-Julian charge distribution

$$\rho_e = \frac{1}{4\pi} \boldsymbol{\nabla} \cdot \boldsymbol{E} \approx -\frac{1}{2\pi c} \boldsymbol{\Omega}_s \cdot \boldsymbol{B}$$

→ cone-like null charge surface (where $\Omega_s \cdot B$ vanishes)

Formation of BH magnetospheres

<B-fields transportation>

Theory:

infalling gas bring magnetic flux

→ highly-magnetized gas disk around BHs (Magnetically Arrested Disks, MADs)

EHT observations: highly-magnetized, poloidal B structure are expected at M87 vicinity

<Plasma injection>

Theory: main source = $\gamma\gamma$ interactions of disk photons

Current Structure · Charge Distribution of BH Magnetosphere

 \bigcirc sufficient plasma \rightarrow steady EM structure (BZ process) (e.g. Blandford & Znajek 77)

Difference OPEN B-field structure $\Omega(r, \theta) > \Omega_F$ in nearby, $\Omega < \Omega_F$ at far

 far zone: negatively charged outflow maintains the stational current (connected to the jet)

near horizon: positively charged inflow
 (consistent w/ infall due to the gravity, rapid rotation)

almost spherical null charge surface $(r_{null} \sim 2r_g)$

Formation of "Spark Gap" in Charge-Starved BH Magnetospheres

 \bigcirc charge starved \rightarrow time-dependent E-field (analogical to <u>pulsar polar cap/outer gap</u>)

© charge starved due to the low plasma injection (Levinson & Rieger 11; Levinson & Segev 17; Hirotani & Pu 16 etc...)

 \rightarrow local charge deficiency around null surface

$$n < n_{GJ} (= \left| \rho_{GJ} \right| / e)$$

→ displacement current develops, maintaining electric current

 $\partial_t(E_p) \approx -4\pi (j^r - J_0/r^2)$

local, intermittent E-field region ("spark gap")

Formation of "Spark Gap" in Charge-Starved BH Magnetospheres

 \odot charge starved \rightarrow time-dependent E-field

- © charge starved due to the low plasma injection (Levinson & Rieger 11; Levinson & Segev 17; Hirotani & Pu 16 etc...)
 - \rightarrow local charge deficiency around null surface

$$n < n_{GJ} (= \left| \rho_{GJ} \right| / e)$$

→ displacement current develops, maintaining electric current

 $\partial_t(E_p) \approx -4\pi (j^r - J_0/r^2)$

local, intermittent E-field region ("spark gap")

efficient acceleration, gamma-ray emission secondary pair creation

Examining BH Spark Gap Natures…

- Steady gap approximations (likewise pulsar outer gap model cheng et al. 1986a,b)
- Introducing time-dependence
 Introducing time-dependence
 - 1D local model (Levinson & Cerutti 18; Chen et al. 20; Kisaka et al. 20, 22) fixed global B-field structure solving E-field & plasma evolutions

• 2D global model (Parfrey et al. 19; Crinquand et al. 20,21; Hirotani et al. 22,23; Niv et al. 23)

considering time-dependent B-field

escaping gamma rays for SMBH magnetospheres

= detectable!

possible connection w/ TeV flares from known AGNs

My Current Research:

High-energy Gamma Rays from Stellar-Mass BH Magnetospheres in 1D GRPIC Simulations

(Kin et al. 23 in prep.)

Motivation: Detecting Isolated stellar-mass Black Holes via Gamma-Rays?

 $\odot ~ {\sim} 10^8$ undetected IBHs in the Galaxy

 $SFR \times V_{gal} \times t_{galaxy}$ ~10⁻¹⁴pc⁻³yr⁻¹ ~10¹¹pc³ ~10Gyr for 10 M_{\odot}

 \rightarrow possible interactions w/ ISM clouds

MAD formation around IBHs (e.g. Ioka et al.17; Kimura et al. 21)

efficient magnetic flux transportation

 \rightarrow become MAD for low- β ISM accretion

Gamma rays from IBH magnetospheric "spark gap" can be detected?

Simulation Setting

Metric term $\Delta = r^2 + a^2 - 2r_a r$ gamma-ray $\Sigma = r^2 + a^2 \cos^2 \theta$ emission $A = (r^2 + a^2)^2 - a^2 \Delta \sin^2 \theta$ $\alpha^2 = \Sigma \Delta / A$ acceleration $4r_g$ pair creation IC scattering $a_* = 0.9$ soft photons from accretion disk (steady, isotropic) $\theta = 30^{\circ}$ BH $M = 10 M_{\odot}$ $Kr_{g} = \frac{GM}{c^{2}} \sim 1.5 \times 10^{6} \text{ cm}$ $r_H \sim 1.5 r_a$ $B_H = 2\pi \times 10^7 \,\mathrm{G}$ gravitational radius

© 1D · GRPIC simulation code

(Levinson & Cerutti18; Kisaka et al.20;22)

- considering General Relativistic effect • solve particle motion w/ real mass $\frac{du_{\pm}}{dt} = -\sqrt{g_{rr}}\gamma_{\pm}\partial_r(\alpha) + \alpha \left(\frac{q_{\pm}}{m_e}E_r - \frac{P}{m_ev_{\pm}}\right) : e^{\pm} \text{ EoM}$ gravity (inertia term) acceleration back reaction of radiation $B_r \quad \frac{dp^r}{dt} = -\sqrt{g^{rr}}p^t\partial_r(\alpha) : \text{ ic photon trajectory}$
 - → evaluate the charge/current distribution, solve the Maxwell's eq. at each grid $\partial_t (\sqrt{A}E_r) = -4\pi (\Sigma j^r - J_0)$: Ampere's law
 - $\partial_r \left(\sqrt{A} E_r \right) = 4\pi \Sigma (j^t \rho_{GJ})$: Gauss' law
 - $\boldsymbol{\cdot}$ include IC $\boldsymbol{\cdot}$ pair creation interactions

Kerr spacetime

© steady, axisymmetric B-field (split-monopole)

Simulation Result: Overall Evolution

10/13

 10^{8}

Simulation Result: Disk Photon 11/13Intensity Dependence

IC

 $\tau_0 \approx n_\gamma \sigma_T r_g \propto \text{disk photon intensity}$: Thomson depth for $r_g \xrightarrow{\gamma_e} \Lambda_{\Lambda}^{\epsilon_{ic}} \xrightarrow{\text{creation}} e^{+ic} \xrightarrow{\gamma_e} \xrightarrow{\gamma_e} e^{+ic} \xrightarrow{\gamma_e} \xrightarrow{\gamma_e} e^{+ic} \xrightarrow{\gamma_e} e^{$ controlling e^{\pm} pair multiplicity $(\tau_{pair} \sim 0.1 \tau_0 \times (\epsilon_{ic} \epsilon_2)^{-1})$

Semi-Analytic Model of Gamma-Ray ^{12/13} Emission from Gap

Opredicting gamma-ray emissivity for wide range of BH mass , gas density

the gap disk photon B-field strength opacity peak energy at the horizon ISM density, BH mass one-zone IBH MAD model (Kimura et al.21) au_0 , ϵ_{min} , B_H

solve simplified EoM, photon transfer, pair creations \rightarrow gap boundaries: enough pairs created **maximum Lorentz factor** γ_{pk} **gamma-ray peak luminosity** $L_{cur,pk}$

Semi-Analytic Model of Gamma-Ray ^{12/13} Emission from Gap

or predicting gamma-ray emissivity for wide range of BH mass, gas density

Summary

©Research Motivation: finding undetected isolated BHs through **gamma-ray** observation gas infall \rightarrow formation of **BH magnetosphere**, particle acceleration?

⇒GeV-TeV gamma rays detectable from ~kpc, unID candidates

Back up

typical light curve at the outer boundary

Discussion: strategy

% pc (persec)~3×10¹⁸ cm

 \bigcirc spectrum peak: 10-100GeV \rightarrow main target: Fermi-LAT unIDs

- hard spectral index for low energy side
- has a peak in Fermi-LAT sensitivity range
- association w/ gas clouds, point source

...will be the selection criteria

◎determining the position: cross-match w/ optical~X-ray spatial resolution of gamma-ray detector: ~1° → if ~kpc distant, size of error circle: ~pc! cross-matching w/ data from other observation;

- Gaia(IR~optical)
- NuSTAR etc... (X-ray)

...will be crucial to narrow down & determine the location

Discussion: time variability

𝔅 L_{cur} sensitive to gas density: $L_{cur}/L_{BZ} ∝ τ_0^{-3.8} ∝ n_{ISM}^{-4}$ → variable due to the gas turbulence the timescale :

 $\tau \sim \frac{R_a (\text{length scale of gas turbulence})}{V_R (\text{infalling gas velocity})}$ $\simeq \frac{8.3 \times 10^{13} \text{ cm}}{10^6 \text{ cm s}^{-1}} \simeq 10^8 \text{ s}$

 $n_{ISM} = 50 \text{ cm}^{-3} \text{ (m} = 2.4 \times 10^{-5} \text{)}$ ⁻¹ cm⁻²] 10^{-9} CTA-N, 50h Fermi-LAT, 10yr (0,0) = (0,0)**CTA-S** E^{Λ} , $E^{\mu}_{e^{\Lambda}}$ [erg s⁻¹¹ 10⁻¹³ 10⁻¹⁵ $d_1 = 0.5 \text{kpc}$ 10^{-2} 10^{-4} 1.0 10^{2}

10⁻⁷ -

 $M = 50 M_{\odot}$, $j_0 = -1/2$

 $n_{ISM} = 6 \text{ cm}^{-3} (\dot{m} = 2.9 \times 10^{-6})$

 $n_{ISM} = 10 \text{ cm}^{-3} \text{ (m} = 4.8 \times 10^{-6} \text{)}$

 $n_{ISM} = 20 \text{ cm}^{-3} (\dot{m} = 9.5 \times 10^{-6})$

 E_{v} [GeV]

 10^{4}

Semi-Analytic Model of Gamma-Ray Emission from The "Gap"

 \odot imitate the acceleration of e^- , gamma-ray emissivity during the oscillation

 B_H (gas transports magnetic flux)

1) solve the simplified EoM of one e^- from inner boundary r_{in}

$$\frac{(\gamma m_e c)}{dt} = eE_r(B_H, r_{in}) - \frac{P_{cur}(\gamma)}{c} - \frac{P_{ic}(\gamma)}{c}$$

2) consider the pair creation

 \rightarrow the position where enough pair created = outer boundary r_{out}

3) iteration, find r_{in} , r_{out} that satisfy $\frac{r_{in}+r_{out}}{2} \sim 2.0 r_g$

disk photon peak energy

define the evolution of the e^- energy from $r_{in} \rightarrow r_{out}$

 $rac{1}{2}$ gamma-ray luminosity of the e^{-} also found unanimously

Discussion: expected number of detection in certain gas phase \mathcal{N}_{det}

© \mathcal{N}_{det} =number of IBHs in gas & sensitivity limit sensitivity limit $d_{i,det}$: luminosity vs sensitivity

 $d_{i,det} = \left| \frac{L_{obs}}{A\pi F} \sim 5 L_{obs,33}^{1/2} F_{sen,-12}^{-1/2} \text{ kpc} \right|$

$$\sqrt{M^{11} \text{sen}}$$

$$\therefore N_{det} \sim n_0 \xi_0 \frac{1 - \gamma}{M_2^{1-\gamma} - M_1^{1-\gamma}} M^{1-\gamma} 2\pi H_{TSM} d_{i,det}^2 \simeq 3.7 \left(\frac{d_{i,det}}{5\text{kpc}}\right)^2 \left(\frac{M}{50M_{\odot}}\right)^{1-\gamma} \text{ (for Cold HI)}$$

$$= \frac{CTAO-N,50h}{CTAO-S,50h} \text{ CTAO-S,50h} \text{ Fermi-LAT}(0,0),10y$$

$$= \frac{dN}{dM} \propto M^{-\gamma} (\gamma \sim 2.6 \text{ Abbott et al} \xi_0 : \text{Volume filling factor} n_0 \sim \mathcal{R}_{GW} n_{gal}^{-1} H_0^{-1} \sim 2 \times 10^2 \text{ kpc}^{-3} : \text{ merged BH density}$$

$$= \frac{10^{-2}}{10^{-2}} \frac{10^{-1}}{10^{-2}} \frac{10^{-1}}{10^{-1}} \frac{10^{-2}}{10^{-2}} \frac{10^{-1}}{10^{-1}} \frac{10^{-2}}{10^{-1}} \frac{10^{-1}}{10^{-1}} \frac{10^{-1}}{10^{-1}}$$

ブラックホール磁気圏

◎パルサーとの大きな違い:磁場をアンカーする "表面"がない

→ブラックホール周りの時空の角速度 $\Omega(\equiv \frac{d\varphi}{dt})$ と"磁力線の角速度" Ω_F が一致しない

(*B_H,* : ホライズンでの磁場)