~中性子星の観測と理論~研究活性化ワークショップ 2023 2023年9月8日(金) 京都大学 理学研究科セミナーハウス

Current Understandings of the Pulsar Magnetosphere, and a comment on Crab Nebula Polarization

Current Understandings of the Pulsar Magnetosphere

contents

1.Basic ideas and solid results.
2.A lot of challenge has been made; mess; magnetic reconnection?? no outer gap??
3.Untangle: go back to the original

idea, "centrifugal acceleration";

The problem of the pulsar magnetosphere is well-defined.

What happens if a rotating magnet is put in space?

complication

due to pair plasmas.

Basic ideas and solid results

A rotating magnet produces EMF.

available voltage

$$V_0 \approx \frac{\mu \Omega^2}{c^2} \qquad \gamma_{\max} = \frac{eV_0}{mc^2}$$

If a current circuit is established, the system works.

 ~ 0

$$I_0 \approx rac{\mu \Omega^2}{c}$$
 GJ current $F_{gj} = rac{I_0}{e}$ $\mathcal{M} = rac{F}{F_{gj}}$

the expected power

$$\begin{split} L_{0} &\approx \frac{\mu^{2}\Omega^{4}}{c^{3}} \qquad L_{vac} = \frac{2}{3} \frac{\mu^{2}\Omega^{4}}{c^{3}} \sin^{2}\chi \\ L_{ff} &= (1 + \sin^{2}\chi) \frac{\mu^{2}\Omega^{4}}{c^{3}} \\ \text{(Spitkovsky A., 2006, ApJ 648, L51)} \end{split}$$

Basic ideas and solid results

The two solid solutions

Electrostatic solution:

"electrosphere"

if no pair creation Jackson, E.A., 1976, ApJ, 206, 831-841

Krause-Polstorf, J., Michel, F.C., 1985, A&A, 144, 72-80

force-free solution

sufficient plasma source

Contopoulos, I., Kazanas, D., & Fendt, C. 1999, apj, 511, 351

Timokhin, A~N. 2006, mnras, 368, 1055

both have no acceleration

Gaps unstable to pair-creation because of very strong E// (electric field parallel to the magnetic field)

resistive / acceleration region is hidden in a infinitely thin layer, which is outside of the solution.

Pairs are continuously produced.

Pairs are immediately separated by the field-aligned electric field.

A lot of challenges were made

Electrostatic solution: "electrosphere"

force-free solution

something between the two (ES and FF)

with pair creation coupled with particle acceleration and photon emission

very complicated rely on numerical works

MHD approaches difficult

PIC applicable

Summary of Previous PIC approaches

- With the current computer performance, pair plasmas are injected by hand (difficult to treat whole process).
- Once the closed current circuit is established by pair injection, a pulsar becomes active.
- how one makes a setting for the pair injection.
 →For any setting, whatever, a simulator gives a solution even if the setting is not realistic.
- →Results of PIC simulations fully depend on the assumptions → mess. No convincing result.

Analyse what setting makes what \rightarrow S. Kisaka's talk

¥mnras, 448, 606

Summary of Previous PIC approaches

- With the current computer performance, pair plasmas are injected by hand (difficult to treat whole process).
- Once the closed current circuit is established by pair injection, a pulsar becomes active.
- how one makes a setting for the pair injection.
 →For any setting, whatever, a simulator gives a solution even if the setting is not realistic.
- →Results of PIC simulations fully depend on the assumptions → mess. No convincing result.

Analyse what setting makes what \rightarrow S. Kisaka's talk

Natural supply of charged particles by E// → electrosphere (not active)

high density pairs (high multiplicity) are injected near the surface typically with some initial speed.

maybe to obtain an open field structure, something like the force-free solution.

A lot of challenges were made

A case of surface injection

misleading by too much injection from the surface

- magnetic field is opened.
- reconnection is the origin of acceleration.
- instabilities in the neutral sheet

E acceleration

and centrifugal acceleration

Untangle back to the original idea.

atap

1. E'_{\perp} causes the corotation motion. $v_{\varphi} = \Omega r \rightarrow c$ 2. the corotation speed tends to the light speed γnmc^2 3. inertia increases. $\tau = \overline{\gamma_{\max}} / \mathcal{N}$ $\overline{B^2}/4\pi$ 4. centrifugal drift current opens the magnetic field lines 5 "massive corotating plasma" flows out

 ≈ 1

Untangle back to the original idea.

Acceleration efficiency

 $\frac{v_{\varphi} = \Omega r \to c}{\frac{\gamma n m c^2}{B^2 / 4\pi}} = \frac{\gamma}{\gamma_{\text{max}} / \mathcal{M}} \approx 1$ H18

¥mnras, 448, 606

Summary for the future: Let us see

- . what setup for pair creation makes what,
- . centrifugal acceleration in detail

A short comment on the Crab Nebula

Preamble

- IXPE gives a spatially resolved polarization measurement for the Crab Nebula. A good opportunity to improve nebula model.
- Nakamura and Shibata (2007) constructed a model to give a polarization map of the Crab Nebula. We concluded about 60 percent of the magnetic field energy is in the form of turbulent: \$|¥delta B|^2 /B ¥sim 0.6\$.
- It has already been suggest that the turbulent fields plays important roles on nebula dynamics and particle acceleration (see. eg. Porth et al., 2014; Tanaka et al., 2018).
- With the help of the data by IXPE, Chandra and IC gamma-rays telescopes, we are attempting an empirical model of the nebula.

Let us make an empirical mode with minimized assumptions! Axisymmetry. disc + inner ring + outer ring + jet + halo 4 component ₂₂

corrected I and photon-index maps "fort.21" "fort.22" observation Nebula Image I 18000 6 9000 8000 16000 4 7000 14000 model 6000 2 12000 XXXXXXXXXXXX 5000 + 4000 10000 ++ uniform disc + uniform halo N 0-++ 3000 ++++++ 8000 2000 **-**0.5 1.5 3.5 2.5 3 -2 6000 **Radial Profile** 4000 20000 "fort.22" using 1:2 "fort.22" using 1:3 -4 2000 model 15000 0 -6 observation -2 2 4 6 0 -6 -10000 v Doppler boost free I(r) profile 5000 \rightarrow volume emissivity profile j(r) 0⁰ð 6 r

Chandra Image by Mori et al.; Note pile-up

The flow speed increases with the distance!

The Crab Nebula model in construction

Thank you