# **Evaluating the Influence of** Light-Bending in the Timing **Analysis of Soft X-ray Pulses** from Magnetars

- M2 Chushu Qu (sojo)
- Supervisor: Yudai Suwa (UTokyo) Teruaki Enoto (Kyoto Univ.)

The University of Tokyo, Graduate school of Arts and Sciences

~中性子星の観測と理論~研究活性化ワークショップ 2023



## Magnetars (SGR/AXP)

- Lx ~ 10<sup>33</sup> 10<sup>35</sup> erg/s >  $\dot{E}_{rot}$
- Long period & Fast decay  $P \sim 2-12s$   $\dot{P} \sim 10^{-13}-10^{-10} s/s$
- Strong magnetic field
   B<sub>surf</sub> ~ 10<sup>14</sup> G 10<sup>15</sup> G
- 30+ confirmed





#### Soft X-ray Component (SXC) From hot NS surface



Distribution of magnetic field







#### Hot spot + Emission from entire surface Newtonian

#### Credits: NASA NICER Group



#### Hot spot only Light bending





#### Spectrum fit by a single blackbody component



### Hot spot emission - Flux



 $\frac{r_g}{R} = \frac{1}{3}$ 



$$x^{k} = (t, r, \theta, \psi)$$

$$u^{k} = \frac{dx^{k}}{d\lambda}$$

$$\psi = \int_{R}^{\infty} \frac{-u^{\psi}}{u^{r}} dr = \int_{R}^{\infty} \frac{dr}{r^{2}} \left[\frac{1}{b^{2}} - \frac{1}{r^{2}} (1 - \frac{r_{g}}{r})\right]^{-1/2}$$

$$\sin \alpha = \frac{b}{R} \sqrt{1 - \frac{r_{g}}{R}}$$

$$dF = \frac{Ib}{R^{2}} \left|\frac{db}{d\cos\psi}\right| \frac{dS}{D^{2}} = (1 - \frac{r_{g}}{R}) I_{0}(\alpha) \cos \alpha \frac{d\cos \alpha}{d\cos \psi} \frac{dS}{D^{2}}$$

 $\mu(t) = \sin\theta\sin i\cos\Omega t + \cos\theta\cos i$  $F = \mu(i,\theta,\varphi)(1 - \frac{r_g}{R}) + \frac{r_g}{R}$ 









### Estimate the size of hot spot



#### **Uniform temperature**



#### Consistency check: timing - spectrum assuming a circular radiation area

Estimating the size of hotspots from pulse profile



#### **Radiation radius**

Estimating the size of hotspots from spectrum



- T: blackbody temperature D: distance
- S: emission area

Time-averaged projection of the radiation radius





### **1E 1048.1–5937**



#### Timing: $R_{max} = 1.68 \, km$

R = 12 km

Unfolded Spectrum



### 1E 1547.0-5937



#### Timing: $R_{max} = 2.57 \, km$

R = 12 kmDistance = 4.5(5) kpc



Unfolded Spectrum

Tiengo +2010



## Summary

- profiles using only hotspots, which is more natural

### Future work

- Taking into account of beaming effect
- Taking into account of different shapes of hotspots
- Multi-peak pulse profile

Considering the light bending effect, it became possible to explain the pulse

Managed to check the consistency of hotspot parameters in Newtonian model

Developing spectrum analysis code incorporating the light bending effect