Magnetic fields in Magnetar and CCO

Yasufumi Kojima Hiroshima University

NS2023 @ Kyoto

2023/Sept/06-08

'Evolution' of B-field

K. Makishima

IAU Symposium No. 363, 2023

Magnetic field in magnetar

- $B_d \sim 10^{14} G$ (surface dipole) from spin down (P, \dot{P})
- $B_t \sim 10^{16} G$ (toroidal) inferred by free precession
- Magnetic field 'evolution'

Observation Sources plotted as a function of characteristic age

- -> Toroidal component is constant with time
- -> Surface dipole decays (not simple exponential but power law form)

Hall evolution in crust (theory)

Intense toroidal component decays fast!

Energy transfers due to non-linear coupling, so that the decay of dipole is not simple exponential but complicated (likely slow power-law).

Hall evolution in crust

phase

YK, Kisaka(12) MNRAS 421, 2722

Model Crustal fracture relevant to magnetic field

Magnetic field geometry is assumed, but the field strength is constrained by the magneto-elastic equilibrium

Savorov, A(23) MNRAS 523, 4089

Working hypothesis (biased view) for B-field

Two components for B-field

- $B_t \sim 10^{16}G$ (toroidal) confined deep in core, Ferromagnet? $B_t \sim 10^{14}G$ at core-crust interface (K. Fujisawa+(23); YK, & S. Yoshida (23) in prep.)
- $B \sim 10^{14} G$ (weak poloidal and toroidal components) in crust Relevant electric current decays to produce Joule heat Crustal magnetic field $\sim 10^{14} G$ ($B \sim 10^{14-15} G$) Magnetic energy stored in crust for magnetars and CCOs $E_B \sim 2 \times 10^{45} (B_{14.5})^2 erg$ $L \sim E_B / \tau \sim 3 \times 10^{33} (B_{14.5})^2 (\tau_{10kyr})^{-1} erg/s$ τ magnetic dissipation timescale \sim life time of the activity $\sim 10^4 - 10^5$ yr

Giant flare ($E \sim 10^{45} erg$)? B-field in core/entire star (e.g., loka 01)

Interior B-field is uncertain, but the consequence is examined below

Crustal fracture by the Hall magnetic field evolution

YK (22) arXiv:2209.04139; ApJ(22)938,id.91 YK, Kisaka & Fujisawa(23) arXiv:2303.02312; ApJ(23) 946 ,id.75

Magnetic field strength is same, but geometry is different

 $B\sim 10^{14}G$

Elastic deformation by the Hall evolution

Dynamical equilibrium

≠ Chemical (compositional) equilibrium

-> evolution in a long timescale

Elastic limit -> crustal fracture

- Breakup time?
- Elastic energy?

Magnetic field evolution in crust by Hall effect

Dynamical equilibrium (barotropic)

$$-\frac{1}{\rho}\vec{\nabla}P-\vec{\nabla}\Phi_{\rm g}+\frac{1}{c\rho}\vec{j}\times\vec{B}=0,$$

Evolution driven by electron fraction gradient for barotropic case Calculation in a Hall timescale (secular timescale $\sim 10^2 - 10^5$ yr)

$$\begin{split} \frac{\partial}{\partial t}\vec{B} &= -\vec{\nabla} \times \left[\frac{1}{en_{\rm e}}\vec{j} \times \vec{B}\right] = -\vec{\nabla}\chi \times \vec{a} - \chi\vec{\nabla} \times \vec{a}, \\ \chi &\equiv \frac{c\rho}{en_{e}} = \frac{4\pi\rho_{c}(\Delta r)^{2}}{\tau_{\rm H}B_{0}}\hat{\chi}. \quad \vec{j} \times \vec{B}/(c\rho) = \vec{a} \end{split}$$

Beyond a threshold, solid crust is broken

<-> Bursts in SGR?

Breakup time, the maximum elastic energy are calculated

Result for barotropic model

• Breakup time
$$t \le t_* \equiv 1.5 \times 10^{-3} \left(\frac{\sigma_c}{0.1}\right) \left(\frac{v_s}{v_a}\right)^2 \tau_{\mathrm{H}}, \qquad t_* \propto B^{-3}$$

= $4.2 \times 10^3 \left(\frac{\sigma_c}{0.1}\right) \left(\frac{B_0}{10^{14}\mathrm{G}}\right)^{-3} \mathrm{yr}.$ a few years for $B = 10^{15} G$

• Change of magnetic energy

_ •

$$\Delta E_{\text{mag}} = 2\pi \int_{r_c}^{R} r^2 dr \int_{0}^{\pi} \sin \theta d\theta \, \frac{(\delta B_{\phi})^2}{8\pi} \qquad \qquad \mathbf{E} \sim 10^{41} \, erg \\ \sim 10^{-7} \, E_B \, \left(B = 10^{15} G \right)^2 \\ = 2.0 \times 10^{-4} \, B_0^2 R^3 \left(\frac{\sigma_c}{0.1}\right)^2 \left(\frac{v_s}{v_a}\right)^4 \left(\frac{t}{t_*}\right)^2$$

Main results and summray

Breakup time and elastic energy estimated

✓ a few years for B = 10¹⁵G and E~10⁴¹ erg in a simple magnetar model comparable to repeat time and energy scale in observed bursts (not giant flare) (YK 22)
✓ Timescale increases by ~10² for confined field in CCOs (YK+ 23) No (or quite rare) bursts in CCOs

Further improvement

irregular magnetic field, coupling with magnetosphere, thermal effect T~ 10^8 K , ...