Evolution of collectivity in the $\mathbf{N}=\mathbf{5 0}$ isotones towards 100Sn

Friday, 28 July 2023 13:30 (20 minutes)

Abstract

We propose to measure the reduced transition probabilities $\mathrm{B}(\mathrm{E} 2 ; 0+\mathrm{g} . \mathrm{s} . \rightarrow 2+1)$ of 96 Pd and 98 Cd by means of inelastic scattering at intermediate energies. The radioactive 96 Pd and 98 Cd beams are produced by fragmentation of a $345 \mathrm{MeV} / \mathrm{u} 124 \mathrm{Xe}$ beam on a 9Be target. The isotopes of interest are selected and identified with the BigRIPS separator, then impinged on the secondary target. A Au and a Be secondary targets are used for the inelastic scattering. The gamma-rays emitted from the excited states are measured with the DALI2+ array, and the outgoing particles are identified with the ZeroDegree Spectrometer. The cross sections populating to the $2+1$ states on the Au and the Be targets are extracted from the observed gamma-ray intensities. The excitation of the $2+1$ state is caused by both the electromagnetic and the nuclear interaction between target and projectile. To extract the reduced transition probability $\mathrm{B}(\mathrm{E} 2)$, reaction model calculations will be performed and the nuclear deformation length and $\mathrm{B}(\mathrm{E} 2)$ value for the projectile nucleus will be adjusted to reproduce simultaneously the measured cross sections on the Au and the Be targets.

The 96Pd and 98Cd are only 4 and 2 valence protons below the doubly magic 100 Sn . The measurement of this experiment will allow for a detailed comparison of the nuclear structure between the $56-78 \mathrm{Ni}(\mathrm{Z}=28)$ isotopes versus the $78 \mathrm{Ni}-100 \mathrm{Sn}(\mathrm{N}=50)$ isotonic chain, both regions sharing the same $\mathrm{p} 3 / 2, \mathrm{f} 5 / 2, \mathrm{p} 1 / 2$ and $\mathrm{g} 9 / 2$ orbitals for valence neutrons and protons, respectively. The shell model calculations in the f5/2, p,g9/2 model space in Ref.[1] predict a decrease of collectivity towards the complete occupation of the g9/2 orbitals, with B(E2; $2+1 \rightarrow 0+$ g.s.) value of about 150 e 2 fm4 for 98 Cd . Nevertheless, it is well known that the single-particle d5/2 orbital above the magic number 50 for neutrons and protons, together with the quasi-SU3 partner g9/2 can give rise to collectivity [2]. In Ref.[2], it is suggested that the findings of B. Cederwall and collaborators in 92 Pd [3] indicates the necessity to consider the $\mathrm{d} 5 / 2$ orbital above the magic number 50 to describe the nuclei in this region. With the $B(E 2)$ measurements of this experiment, the role of the $d 5 / 2$ orbital in the structure of the nuclei approaching 100 Sn will be explored.
[1] R. M. Pérez-Vidal, et al., Phys. Rev. Lett. 129, (2022) 112501
[2] A. P. Zuker, et al., Phys. Rev. C 92, (2015) 024320
[3] B. Cederwall, et al., Nature (London) 469, (2011) 69

Primary authors: Dr CHEN, Sidong (University of York); Dr PEREZ VIDAL, Rosa Maria (IFIC, CSIC-University of Valencia; INFN LNL)

Co-authors: DOORNENBAL, Pieter (RIKEN); PETRI, Marina; PASCHALIS, Stefanos (University of York); BENTLEY, Michael (University of York); Dr GADEA, Andres (IFIC, CSIC-University of Valencia)

Presenter: Dr CHEN, Sidong (University of York)

