中性子照射量の計算 インジウム箔からのガンマ線データの解析

張力 2023.5.8

指導教員:山崎祐司

中性子量の計算に用いたデータ

Indium箔

Indium箔 からのガン マ線のGe 測定

番号、質量、面積、厚さ

Beam Current、Beam on時刻、Beam off時刻

箔番号、測定時間、キャップ、ガンマ線放射データ

データの例

Foil number	File name	Run	Beam on
7	20230308_Ge1_In_7_27mm_run1	1	
	20230308_Ge1_In_7_27mm_run2	2	
	20230308_Ge1_In_7_27mm_run3	3	
8	20230308_Ge1_In_8_27mm_run1	1	
	20230308_Ge1_In_8_27mm_run2	2	
9	20230308_Ge1_In_9_27mm_run1	1	
	20230308_Ge1_In_9_27mm_run2	2	
10	20230308_Ge1_In_10_27mm_run1	1	-
	20230308_Ge1_In_10_27mm_run2	2	-
	20230308_Ge1_In_10_27mm_run3	3	-
11	20230308_Ge1_In_11_27mm_run1	1	-
	20230308_Ge1_In_11_27mm_run2	2	
	20230308_Ge1_In_11_27mm_run3	3	
12	20230308_Ge1_In_12_27mm_run1	1	-
	20230308_Ge1_In_12_27mm_run2	2	
	20230308_Ge1_In_12_27mm_run3	3	12:51:14
	20230308_Ge1_In_12_27mm_run4	4	
	20230308_Ge1_In_12_27mm_run5	5	
13 (2mm)	20230308_Ge1_In_13_2mm_run1	1	-
	20230308_Ge1_In_13_2mm_run2	2	
	20230308_Ge1_In_13_2mm_run3	3	
	20230308_Ge1_In_13_2mm_run4	4	
	20230308_Ge1_In_13_2mm_run5	5	
	20230308_Ge1_In_13_2mm_run6	6	
	20230308_Ge1_In_13_2mm_run7	7	
	20230308_Ge1_In_13_2mm_run8	8	
	20230308_Ge1_In_13_2mm_run9	9	
13 (27mm)	20230308_Ge1_In_13_27mm_run1	1	
	20230308_Ge1_In_13_27mm_run2	2	
	20230308_Ge1_In_13_27mm_run3	3	
	20230308_Ge1_In_13_27mm_run4	4	

2023.03.15

Beam off	Start	Stop	Real time(s)	Active time(s)
	19:27:23	19:32:23	300	298
	19:32:24	19:37:24	300	298
	19:37:24	19:42:24	300	298
	18:56:30	19:06:30	600	596
	19:06:32	19:16:32	600	596
	18:24:50	18:34:50	600	594
	18:34:50	18:44:50	600	595
	17:43:52	17:53:52	600	591
	17:53:53	18:03:53	600	592
	18:03:54	18:13:54	600	593
	16:41:04	16:51:04	600	583
	16:51:06	17:01:06	600	585
	17:01:07	17:11:07	600	587
	15:50:58	16:00:58	600	567
	16:00:59	16:10:59	600	571
13:51:14	16:11:00	16:21:00	600	574
	19:48:48	19:58:58	600	598
	19:58:49	20:08:49	600	598
	20:15:11	20:35:11	1200	1193
	20:35:12	20:55:12	1200	1194
	20:55:12	21:15:12	1200	1195
	21:15:14	21:35:14	1200	1196
	21:35:15	21:55:15	1200	1197
	21:55:16	22:15:16	1200	1198
	22:15:17	22:35:17	1200	1198
	22:35:18	22:55:18	1200	1198
	22:55:19	23:15:19	1200	1199
	14:53:38	15:03:38	600	538
	15:03:39	15:13:39	600	545
	15:13:41	15:23:41	600	551
	15:23:42	15:33:42	600	557

In箔からのガンマ線の解析 Foil 7 Run 1 の例

ヒストグラムの作成 JAC fileを読み込み、ヒストグラムを作成して、root fileを作る

Counts

2023.03.16

Gauss Fitting 336KeV付近のGauss関数をfitする

Fitting

[0]*TMath::Gaus(x,[1],[2])+[3]*(x-[1])+[4]

Gauss Areaの計算 Gauss分布の下の面積を計算した

[0]*TMath::Gaus(x, [1], [2])+[3]*(x-[1])+[4]

Proces	ssing f7	⁷ r1.C			
Info i	in <tcar< td=""><td>nvas::MakeDefCanva</td><td>s>: created def</td><td>ault TCanvas</td><td>with name c1</td></tcar<>	nvas::MakeDefCanva	s>: created def	ault TCanvas	with name c1
FCN=2	211.681	FROM MIGRAD ST	ATUS=CONVERGED	150 CALLS	151 TOTAL
		EDM=6.823	e-10 STRATEGY	′= 1 ERRO	R MATRIX ACCURATE
EXT	PARAMET	ΓER		STEP	FIRST
NO.	NAME	VALUE	ERROR	SIZE	DERIVATIVE
1	p0	1.46034e+02	7.14726e+00	4.01176e-02	2.66230e-06
2	p1	1.34274e+03	9.59676e-02	6.83100e-04	3.12423e-05
3	p2	2.21154e+00	8.50690e-02	4.72254e-04	4.99155e-04
4	р3	-2.10430e-02	5.14899e-03	2.98981e-05	-9.54190e-04
5	p4	1.60444e+01	3.68782e-01	2.11557e-03	-1.26689e-05
The ar	reacheck	k of the Gauss fun	ction is:809.54		
The ar	reaerror	[•] of the Gauss fun	ction is:50.3935		

Area = $C\sigma\sqrt{2\pi} = (1.46034 \times 10^2) \times (2.21154 \times 10^0) \times \sqrt{2\pi} \approx 809.54$

2023.03.22

誤差の計算 面積の誤差を計算して、Error barをプロットする [0]*TMath::Gaus(x, [1], [2])+[3]*(x-[1])+[4]

Processing f7r1.C...

Info in <TCanvas::MakeDefCanvas>: created default TCanvas with name c1 STATUS=CONVERGED FCN=211.681 FROM MIGRAD 150 CALLS

EDM=6.823e-10 STRATEGY = 1STFP FXT PARAMETER

				5121	
NO	. NAME	VALUE	ERROR	SIZE	DE
1	p0	1.46034e+02	7.14726e+00	4.01176e-02	2
2	p1	1.34274e+03	9.59676e-02	6.83100e-04	
3	p2	2.21154e+00	8.50690e-02	4.72254e-04	2
4	р3	-2.10430e-02	5.14899e-03	2.98981e-05	-9
5	p4	1.60444e+01	3.68782e-01	2.11557e-03	-1
he	areacheck	of the Gauss func	tion is:809.54		
he	areaerror	of the Gauss func	tion is:50.3935	5	

$$\Delta A = \sqrt{\left(\frac{\partial A}{\partial C}\right)^2 (\Delta C)^2 + \left(\frac{\partial A}{\partial \sigma}\right)^2} (\Delta C)^2 + \left(\frac{\partial A}{\partial \sigma}\right)^2 + \left(\frac{\partial A}{\partial$$

151 TOTAL ERROR MATRIX ACCURATE FIRST RIVATIVE .66230e-06 .12423e-05 .99155e-04 .54190e-04 .26689e-05

Error Propagation Formula

 $\Delta A = \sqrt{\left(\frac{\partial A}{\partial C}\right)^2 (\Delta C)^2 + \left(\frac{\partial A}{\partial \sigma}\right)^2 (\Delta \sigma)^2}$

 $(\Delta\sigma)^2 = \sqrt{2\pi} \left(C^2 (\Delta\sigma)^2 + \sigma^2 (\Delta C)^2 \right) \approx 58.15$

照射中性子量の計算 ガンマ線量の寿命の計算、Beam Off時のガンマ線量の計算、 中性子照射量の計算

Foil 13の例、半減期の確認 • Foil13の信号が弱く、多くのrunを取った

NO.	NAME	VALUE	ERROR	SIZE	DERIVATIV
1	Constant	7.32774e+00	2.94443e-01	3.16727e-05	-6.03597e
2	Slope	-2.49940e-03	6.23942e-04	6.71286e-08	-3.13827e

$$Area = e^{Slope^*x} = e^{-t/\tau}$$

 $\tau = -\frac{1}{\text{Slope}} \approx 6.67 \pm 1.67 \text{ h}$
 $t_{1/2} = \tau \ln 2 \approx 4.62 \pm 1.16 \text{ h}$

Reference:4.486h

10

Foil 7-120 Gauss Fitting

Foil 7-9

正常にフィットできる

2023.04.12

Foil 10-12

信号が弱いので、直接フィットできない

Foil 7-120 Gauss Fitting

3 run を 1 run として結合すると

Beam Off時のガンマ線量の計算

400

Beamのff時のガンマ線量の計算 **CPSの計算**

サンプルNo.	照射量(C)	live time(s)	冷却時間(day)	Peak area(counts)	cps/C@N(t=0)
	0.0144	298	0.2334	809.54	448.2321
No.7	0.0144	298	0.2369	779.65	437.2955
	0.0144	298	0.2404	808.62	459.4220

照射量の計算 Excel Tableの式より 反応率 (/s) λAM $mRN_{A}B_{\gamma}\varepsilon_{cap}\left(1-e^{-\lambda t_{i}}\right)e^{-\lambda t_{c}}\left(1-e^{-\lambda t_{m}}\right)$ $\lambda = \frac{1}{\tau} = \frac{\ln 2}{t_{\frac{1}{2}}}$ M: 原子量 R: 同位体存在比m: 箔の質量 $N_A:$ アボガドロ定数 $\epsilon_{cap}:$ 検出効率 *t_i*:照射時間 t_c :冷却時間 t_m :測定時間

$N = (r/\sigma) \cdot t_i$

照射量の計算 全部のfoilの照射時の照射量を計算する

$\lambda = 4.292 \times 10^{-5}/s$	照射時
検出効率: 0.015	原子量

サンプルNo.	γ線(counts)	冷却時間tc(s)	測定時間tm(s)	箔重量(g)	反応率(/s)	反応率(/u/
	809.54	20169	300	0.05325	2.408E-17	6.018E-18
No.7	779.65	20470	300	0.05325	2.349E-17	5.871E-18
	808.62	20770	300	0.05325	2.468E-17	6.168E-18

2023.05.08

間: 3600s γ線分岐比: 0.4583

同位体存在比: 0.9752 114.813 \bullet

照射量の計算 全部のfoilの照射時の照射量を計算する

	サンプルNo.	中性子数(個/s/cm2)	中性子数(個/cm2)
	No.7	1.204E+08	4.335E+11
$\sigma = 0.2$ barn	No.8	9.812E+07	3.532E+11
なってまい $1 - m^2$	No.9	1.840E+08	6.623E+11
	No.10	1.974E+07	7.107E+10
箔の厚さ: 50 um	No.11	1.879E+07	6.763E+10
	No.12	1.656E+07	5.961E+10
	No.13	1.134E+07	4.084E+10

最も多い所で 6.6×10^{11} (Foil 9)、最も少ない所で 4.1×10^{10} (Foil 13)となった。

昨年の単位照射量との比較 Foil 1とFoil 7の位置が大体同じと仮定して比較

中性子数	2022
(個/cm²)	Foil: 1
7.81E+11	
1.37E+12	照射時間:1092s
3.14E+12	
5.46E+11	Beam 電流: 32.85uA
4.91E+11	昭射量:00358C
2.76E+11	
1.77E+11	中性子数:7.81E+11個

中性子数/クーロン: 4.58E-8 個/C

単位照射量あたりの中性子数は約30%減少(大きくは違わない)

中性子数(個/cm2)	
4.335E+11	
3.532E+11	E
6.623E+11	
7.107E+10	Bea
6.763E+10	
5.961E+10	<u></u>
4.084E+10	中性

2023 Foil: 7 照射時間: 3600s am 電流: 4.001uA 照射量: 0.0144C 上子数: 4.33E+11個

中性子数/クーロン: 3.32E-8 個/C

(Foil 9)、最も少ない所 4.1×10^{10} (Foil 13) となった。

2. 昨年のデータと比べた。Foil 1とFoil 7を同じ場所としたら、単位照射 量あたりの中性子数は約30%減少した。

1. ガンマ線量から中性子の照射量を計算した。最も多い所で6.6 × 10¹¹

照射後MPPCの測定

トV特性の測定

降伏電圧が 5Vぐらい減 少した。

オシロでの波形

	Tektronix MD	03014 Mixed	Domain Osc	illoscope	
-	Tek Run				Trig
	1 2.00 V 3 1.00 V Q 4 Coupling Termination	50.0mV ∧ 1.00 V Ω Invert	200ns ■→▼40.00000ns Bandwidth	500MS/s 1000 points Trigger Frequenc	1 X 680mV <u>y: 1.99538kHz</u>

信号は見えたが、増幅率が安定しない

1、降伏電圧が43Vから5Vぐらい減少した。 2、信号は見えたが、増幅率が安定しない。 3、ノイズは20mVぐらい。照射前は10mV以下。

Timeline ()

Time
3.7-3.8
3.15
3.16
3.20
3.22
3.28
4.3
4.5
4.12
4.17
5.8
5.29
5.30

Task 実験を行う データの整理 ヒストグラムの作成 Gauss Fitting Gauss Areaの計算 誤差の計算 Expo Fitting 誤差の再評価 Foil 7-12のGauss Fitting 代表点の描画 照射量の計算 照射量の比較 照射後MPPCの測定

Exponential Fitting Foil 13の例

Foil number	File name	Start	Stop	Real time(s)	Active time(s)	Note	Elapsed time/min	Area/counts
13 (2mm)	20230308_Ge1_In_ 13_2mm_run1	20:15:11	20:35:11	1200	1193		384	587.420
	20230308_Ge1_In_ 13_2mm_run2	20:35:12	20:55:12	1200	1194		404	514.454
	20230308_Ge1_In_ 13_2mm_run3	20:55:12	21:15:12	1200	1195		424	544.366
	20230308_Ge1_In_ 13_2mm_run4	21:15:14	21:35:14	1200	1196		444	497.284
	20230308_Ge1_In_ 13_2mm_run5	21:35:15	21:55:15	1200	1197		464	538.895
	20230308_Ge1_In_ 13_2mm_run6	21:55:16	22:15:16	1200	1198		484	451.941
	20230308_Ge1_In_ 13_2mm_run7	22:15:17	22:35:17	1200	1198		504	395.929
	20230308_Ge1_In_ 13_2mm_run8	22:35:18	22:55:18	1200	1198		524	411.845
	20230308_Ge1_In_ 13_2mm_run9	22:55:19	23:15:19	1200	1199		544	393.580

2023.04.03

Gauss Areaの計算 Gauss分布の下の面積を計算する

General Gauss function

$$Area = \int_{-\infty}^{+\infty} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = 1$$

 $f(x) = C e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

Area = $\int^{+\infty} C e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = C\sigma\sqrt{2\pi}$ $J = \infty$

誤差の再評価 (backup) 2023.04.05 誤差が大きすぎる可能性があるため、前の計算結果を再評価する

[0]*TMath::Gaus(x, [1], [2])+[3]*(x-[1])+[4]

Proce	ssing f7	7r1.C										
Info in <tcanvas::makedefcanvas>: created default TCanvas wi</tcanvas::makedefcanvas>												
FCN=	211.681	FROM MIGRAD S	TATUS=CONVERGED	150 CALLS								
		EDM=6.82	3e-10 STRATEG	Y= 1 ERRO	R N							
EXT	PARAMET	ΓER		STEP								
NO.	NAME	VALUE	ERROR	SIZE	DE							
1	p0	1.46034e+0	2 7.14726e+00	4.01176e-02	2							
2	p1	1.34274e+0	3 9.59676e-02	6.83100e-04	(1)							
3	p2	2.21154e+0	0 8.50690e-02	4.72254e-04	Z							
4	р3	-2.10430e-0	2 5.14899e-03	2.98981e-05	-9							
5	p4	1.60444e+0	1 3.68782e-01	2.11557e-03	-1							
The a	reacheck	<pre>< of the Gauss full</pre>	nction is:809.54									
The a	reaerror	5										

th name c1 151 TOTAL MATRIX ACCURATE FIRST RIVATIVE .66230e-06 .12423e-05 .99155e-04 .54190e-04 26689e-05

Define "[3]*(x-[1])+[4]" rather than "[3]*x+[4]",since it is easy to see the Error when x=mean.

誤差の再評価 (backup) 2023.04.05 誤差が大きすぎる可能性があるため、前の計算結果を再評価する

<u>1、In 箔からのガンマ線をGe検出器で測定したデータを整理して、Badデータを削除した。</u> <u>2、データに基づいて図を作って、FittingとAreaの計算を行った。全部Foilの336KeVの</u>

Gauss分布が見えて、Fitできた。

3、Area-Timeの関係から半減期を求めた。計算結果は参考値とほぼ一緒となった。

