The pelletron experiment

¹²C(p,γ)¹³N, ¹⁰B(p, $\alpha\gamma$)⁷Be ²⁷Al(p, p' γ_{12})²⁷Al&²⁷Al(p, $\alpha\gamma$)²⁴Mg ⁹Be(p, γ)¹⁰B

H. Ishiyama RNC/RIKEN

Nishina School 2023 July 27th- Aug. 4th

¹²C(p, γ)¹³N p + ¹²C $\rightarrow \gamma$ + ¹³N

- A reaction involved in the CNO cycle nuclear burning in massive* stars, ...
- At low (astrophyiscal) energies, two dominant resonances are important.

$$p + {}^{12}C \rightarrow {}^{13}N^* \rightarrow \gamma + {}^{13}N$$

* more massive than the sun

Appropriate energies of proton beams from the accelerator (pelletron)?

Question 1 energy (mass*) difference between ¹²C+p & ¹³N

- Energy levels of at the <u>center-of-</u> mass (CM) system
- mass difference between ¹²C+p and ¹³N is ? keV

Get Mass Excess (mass) from NNDC.

ME: relative mass value to ${}^{12}C$ (ME(${}^{12}C$) = 0)

Question 1 energy (mass*) difference between ¹²C+p & ¹³N

- Energy levels of at the <u>center-of-</u> mass (CM) system
- mass difference between ¹²C+p and ¹³N is 1943 keV

Question 1 energy (mass) difference between ¹²C+p & ¹³N

- Energy levels of at the <u>center-</u> of-mass (CM) system
- mass difference between
 ¹²C+p and ¹³N is 1943 keV
- Calculate the energy differences for [1] and [2]

Answers: 422 keV for [1] 1559 keV for [2] July-Aug. 2023

Nishina School

Question 1 energy (mass) difference between ¹²C+p & ¹³N

- Energy levels of at the <u>center-</u> of-mass (CM) system
- mass difference between
 ¹²C+p and ¹³N is 1943 keV
- Calculate the energy differences for [1] and [2]

Note: The level at 2365 keV (or 3502 keV) is a **resonance**.

In the "laboratory" frame

Question 2 proton kinetic energy necessary to populate a resonance? Is it

July-Aug. 2019 Nishina Scho

How do we measure the **cross sections**?

Cross Section?

Unit Area

Surface Area \times # of target

How many arrows hit targets? = (# of arrows) × (# of target/unit area) × (Area of a target)

$$N_r = N_b \times N_t \times \sigma$$

How many reactions occur? = (# of beams) × (# of target/unit area) × (Cross section)

Nishina School

$N_{\gamma} = N_b \times N_t \times d\sigma/d\Omega \times d\Omega \times \varepsilon \times P\gamma$

Proto beam from accelerator

Beam

viewer

80

target

C target

NaI Detector

03

1717:50

90 100 110 122 130 140 150 160 170 180 190 200

Boron nitride (BN)

target

"in-beam" and "activation"

Extraction of the (resonant capture) cross section of ${}^{12}C(p,\gamma){}^{13}N$

Important parameters

- 1. The number of protons : $N_{\rm b}$
- 2. The number of ${}^{12}C: N_t$
- 3. The number of the 1^{st} or 2^{nd} resonance populated : N_r
- 4. The number of emitted $\gamma: N_{\gamma}$

Extraction of

the (resonant capture) cross section of ${}^{12}C(p,\gamma){}^{13}N$

-- more in details --

- I : electric current of the beam
- e : electron charge
- t : measurement time
- $\sigma~$: cross section of p+12C -> 13N*(2nd :3502 keV) reaction
- $\rho~$: density of target carbon foil
- T : thickness of target carbon foil
- N_A: Avogadro number
- P_{γ} : decay branching ratio of the 3502 keV resonance
- $\dot{\Omega}$: solid angle of NaI(TI)
- ϵ : photo peak efficiency of 3502 keV

$$N_{b} = I \cdot t/e$$

$$N_{t} = N_{A} \cdot T \cdot \rho/12$$

$$N_{r} = N_{b} \cdot N_{t} \cdot \sigma$$

$$N_{\gamma} = N_{r} \cdot P_{\gamma} \cdot (\Omega/4\pi) \cdot \varepsilon$$

- [Parameters]
- I : electric current of the beam
- e : electron charge
- t : measurement time
- σ : cross section of p+12C -> 13N*(2nd :3502 keV) reaction
- $\rho~$: density of target carbon foil
- T : thickness of target carbon foil
- N_A: Avogadro number
- P_{γ} : decay branching ration of 3502 keV
- Ω : solid angle of Nal(Tl)
- ϵ : photo peak efficiency of 3502 keV

$$\sigma = N_{\gamma} \cdot 12 \cdot 4\pi / (I / e \cdot t \cdot N_{A} \cdot T \cdot \rho \cdot P_{\gamma} \cdot \Omega \cdot \varepsilon)$$
$$d\sigma / d\Omega = N_{\gamma} \cdot 12 / (I) e \cdot t \cdot N_{A} \cdot T \cdot \rho \cdot P_{\gamma} \cdot \Omega \cdot \varepsilon)$$

Design of the experiments Yield estimation

<u>the yield</u> of the measurement to check <u>the</u> <u>feasibility</u>

$$d\sigma/d\Omega = N_{\gamma} \cdot 12/(I/e \cdot t \cdot N_A \cdot T \cdot \rho \cdot P_{\gamma} \cdot \Omega \cdot \varepsilon)$$
 [µbarn/sr]

• Let's estimate the yield of N_{γ} this afternoon!

Useful information for yield estimation

- Assumption
 - Typical beam current : I = 200 [nA]
 - Typical measurement time : 20 [min.]
- Please consider and check whether <u>the measurement time (t)</u> and <u>the distance (L)</u> of Nal(Tl) to be set against the target are realistic or not. You can select at L =10, 40, 80 cm Be not beyond about 500 counts/sec, for γ ray counting rate.
- 1 mb = 10⁻²⁷ [cm²]
- Proton beam energy = 2 MeV
- Target thickness >> proton range : "Thick target method"

¹²C(p,γ)¹³N <u>cross section</u> in literatures

Nishina School

The usual method for a certain energy interval

Target: thin so that the p energy-change (loss) is small.

The thick target method

Target: thick enough to stop the beam

 σ : cross section (area of the imaginary circle in the figure)

 γ rays can be emitted in various different proton energies. \rightarrow cross section integrated over a certain energy range.

Nishina School

Calculation for Range → SRIM code (free soft) http://www.srim.org/

====== Target Composition ======= Atom Atom Atomic Mass Name Numb Percent Percent

--- ---- ------C 6 100.00 100.00

Proton beam in Carbon

Bragg Correction = 0.00% Stopping Units = MeV / (mg/cm2) See bottom of Table for other Stopping units

Ion dE/dx dE/dx Projected Longitudinal Lateral Energy Elec. Nuclear Range Straggling Straggling

500.00 keV 3.534E-01 2.738E-04 4.40 um 1837 A 1974 A 550.00 keV 3.334E-01 2.524E-04 5.04 um 2092 A 2182 A 600.00 keV 3.160E-01 2.342E-04 5.72 um 2347 A 2402 A 2632 A 650.00 keV 3.007E-01 2.186E-04 6.44 um 2601 A 700.00 keV 2.872E-01 2.051E-04 7.19 um 2856 A 2873 A 800.00 keV 2.640E-01 1.828E-04 8.80 um 3732 A 3385 A 900.00 keV 2.450E-01 1.651E-04 10.54 un 4553 A 3934 A 1.00 MeV 2.291E-01 1.507E-04 12.41 um 5350 A 4520 A 1.10 MeV 2.163E-01 1.387E-04 14.40 um 6134 A 5138 A 1.20 MeV 2.035E-01 1.286E-04 16.51 um 6915 A 5788 A 1.30 MeV 1.923E-01 1.199E-04 18.74 um 7703 A 6473 A 1.40 MeV 1.825E-01 1.124E-04 21.11 um 8501 A 7191 A 1.50 MeV 1.737E-01 1.058E-04 23.59 um 9309 A 7943 A 1.01 um 8727 A 1.60 MeV 1.659E-01 9.998E-05 26.20 um 1.70 MeV 1.588E-01 9.481E-05 28.93 um 1.10 um 9543 A 1.80 MeV 1.524E-01 9.017E-05 31.77 um 1.18 um 1.04 um 2.00 MeV 1.412E-01 8.219E 05 37.81 um 1.48 um 1.22 um

In-beam or activation

Radioactive decay

 $N(t) = N_0 \exp[-t/\tau]$ $(N_0 e^{-t/\tau})$ N: number of the initial nucleus (survived) or number of decay per unit time

 τ : mean life $t_{1/2}$ = half life --- $N(t_{1/2}) = N_0/2$

Q: Estimate the counts after 20 min. proton irradiation.

10⁻⁴

10⁻¹ 10⁰ Center of Mass Energy (MeV)

Density of current Boron Nitride target $d = 2.06 \text{ g/cm}^3$

$^{27}Al(p, p_1\gamma)^{27}Al, ^{27}Al(p, p_2\gamma)^{27}Al and ^{27}Al(p, \alpha\gamma)^{24}Mg \ reactions$

E, (keV)

⁹Be(p, γ)¹⁰B reaction

D. Zahnow et al. / Nuclear Physics A 589 (1995) 95-105

July-Aug. 2023

Nishina School

Solid angle (unit: steradian)

Beam intensity: We assume 200 nA. (elementary charge: 1.6×10^{-19} C; 1 A = 1 C/s)

Size of the NaI(TI) crystal: 6x6x12 cm²

"Target thickness" divide into 10 or 20 slices.

Photo (full-energy-peak) efficiency of the NaI(TI) => Use following figures

Which distance from the target to the center of NaI(TI) scintillator should be?

NaI Detector efficiency at L = 10 cm

(For ⁹Be measurement, ask Matsumura san)

NaI Detector efficiency at L = 40 cm

NaI Detector efficiency at L = 80 cm

