

Load map of AC-LGAD development in Japan

Satoshi Yano Hiroshima University SKCM²

EIC-Asia meeting

07/13/2023

TOF (bTOF+fTOF) is a main PID detector covering low- p_T region in lacksquareePIC

Detector	r (cm)	z (cm)	Rapidity coverage	Momentum range for $3\sigma \pi/K$ separation
Barrel TOF	63 <r<66< td=""><td>-120<z<120< td=""><td>-1.40<η<1.40</td><td>0.2 < p_T < ~1.2 GeV/c</td></z<120<></td></r<66<>	-120 <z<120< td=""><td>-1.40<η<1.40</td><td>0.2 < p_T < ~1.2 GeV/c</td></z<120<>	-1.40<η<1.40	0.2 < p _T < ~1.2 GeV/c
Forward TOF	8 <r<67< td=""><td>180<z<190< td=""><td>1.74<η<3.83</td><td>0.2 < p < ~2.3 GeV/c</td></z<190<></td></r<67<>	180 <z<190< td=""><td>1.74<η<3.83</td><td>0.2 < p < ~2.3 GeV/c</td></z<190<>	1.74<η<3.83	0.2 < p < ~2.3 GeV/c

- Required performance is the timing resolution of 35ps (25ps) and \bullet spatial resolution of 30um (30um) for bTOF and (fTOF)
 - 3 sigma π/K separation up to ~1.2 GeV/c and ~2.3 GeV/c for bTOF and fTOF, respectively
- AC-LGAD technology meets the requirements lacksquarebTOF and fTOF use the strip and pixel type, respectively

Detector	Area	Channel size	Channel number	Time resolution	Spatial resolution	Material budget
bTOF	~10 m²	0.5mm x 10mm	~2.2 M	35 ps	30 μm in r∙φ	0.01 X0
ftof	~1.4 m²	0.5mm x 0.5mm	~5.6 M	25 ps	30 μm in x and y	0.025 X0

TOF in the ePIC detector

Schedule of TOF in ePIC

Each element R&D Sensor ASIC Module structure Assembly

TOF prototype

2026 Fall

2029 Summar

Mass production of sensors, ASIC, etc. Assembly Construction Each component QA

AC-LGAD R&D elements

- Signal strength per electrode and charge spread in the sensor are the tuning points ullet
 - Signal strength is relevant to the timing resolution —
 - Charge spread is relevant to spatial resolution
- ulletsharing between vicinity electrodes (=worse spatial resolution)
- \bullet is uneven (worse timing resolution)
- Key tuning parameters ${\color{black}\bullet}$
 - Electrode size
 - Sensor thickness
 - n+ dose concentration (n+ layer resistivity)
 - p+ gain layer dose concentration (gain)
 - gain uniformity

Example (1): Large electrode sizes can collect large amounts of charge (=better timing resolution), but small charge

Example (2): Thick sensor can generate larger charges than a thin one (better timing resolution), but the arrival time

R&D status

- Timing and spatial resolution have achieved the • required performance with the R&D sensors
 - 35 ps timing resolution and 15 um spatial resolution with strip geometry (50um thickness)
 - ~20ps timing resolution (20um thickness)
- The larger scale strip sensor (1cm x 500um electrode) • test has been started
 - Aiming the final design is 3.2x4 cm² (1cm x 500um electrode x 4 x 64) with 2 ASIC (EICROC has 128 channels)
- Each parameter is being finalized •
 - Next batch is for finalizing the parameters
 - Next next batch is for the real scale + real readout design

Strip

Pixel

Road map of the AC-LGAD R&D in Japan (To be update)

2023 August

2023 Fall

Preparation phase

Visit KEK (Koji Nakamura) Learn how to proceed with AC-LGAD R&D

Visit BNL (Alessandro Tricoli) Learn how to proceed with AC-LGAD + EICROC R&D

Sensor R&D starting phase

AC-LGAD + EICROC R&D: AC-LGAD + EICROC R&D: Checking the performance of Checking the performance of the latest HPK and BNL the sensors @ HU (⁹⁰Sr), KEK sensors @ HU with ⁹⁰Sr (Laser), Tohoku Univ. (e beam)

Comparison with the other institute results to prove our Full-scale sensors + EICROC: R&D system is going well Checking the performance of the sensors @ HU (⁹⁰Sr), KEK If possible, give some (Laser), Tohoku Univ. (e feedback to the next batch beam)

2024

Sensor R&D phase

Prototype testing phase

Module R&D: Checking the performance of the module @ HU (⁹⁰Sr), KEK (Laser), Tohoku Univ. (e beam)

- EIC-Japan is almost ready to join the AC-LGAD sensor R&D
- Training at KEK and BNL is being planned
- The specific idea of the R&D in Japan is under preparation
- We need to discuss collaboration with the other institutes involving the R&D

	2023	2024		2025		2026		2027		2028		2029		2030			2031		2032
Project Milestones		 					 		 			 	 					 	
CD2/3		 	<u>+</u>				 		 			 	 					 ·	
IR6 ready for		 	+		•••••		 		 			 	 					 ·	
 CD-4a		 	+				 		 			 	 					 	
CD4		 					 		 			 	 					 	
bTOF final design																			
fTOF final design							 		 		•	 	 					 	
Sensor																		. 1	
R&D									 			 	 					 	
Pre-production												 	 						
Production												 	 						
QA																			
ASIC																			
R&D																		:	
Pre-production																			
Production																			
QA																			
Module Structure												 							
R&D									ļ			 			<u>.</u>			 	
Pre-production		 											 						
Production and QA																		·	
Module Assembly		 					 		 			 						 	
R&D		 							 			 	 					 	
Pre-production		 											 					 	
Production		 							 			 	 					 	
QA]	
Service		 	ļ				 		 			 	 					 ·····	
R&D		 	ļ				 						 					 ·	
Production		 	ļ				 		 ļ			 	 					 ;	
QA																_]	
bTOF installation		 	·····				 		 		·	 	 					 	
fTOF installation]	
Software		 					 					 	 					 	
Sim. / Rec.							 					 						 	
Database		 					 		 			 	 					 	
Online																			

