

Updates on Recent Activities in Taiwan

EIC Asian Meeting July 13, 2023

Po-Ju Lin Acadeima Sinca

Progresses on the ZDC Monte Carlo Simulation

Zero Degree Calorimeter (ZDC)

A calorimeter for measuring photons and neutrons away from the interaction point.

*note: space for readout may extend the longitudinal length.

Currently available for everyone one on the ePIC GitHub

ZDC Ver. 1 - E Resolution

- Use particle gun to generate neutrons of different energy
 - Position at the front of ZDC, at angle along the ZDC center
 - Five different energy settings: (10, 20, 50, 100, 150) GeV
 - 1000 events for each setting

Do calibration with linear fitter

$$E_{rec.} = c_1 E_{SiPix} + c_2 E_{Crystal} + c_3 E_{WSi} + c_4 E_{PbSi} + c_5 E_{PbScint} + b_{SiPix}$$

Same behavior confirmed by PNNL

epic (

Previous design studied by Shima

ZDC Ver. 0 - Check of Pb/Sci

Neutron samples

- 0.1 1 GeV with a step of 0.1 GeV
- 1 5 GeV with a step of 1 GeV

1000 events for each energy, shot on the center of the layer.

Fit result: Meas [MeV] = 18*N[GeV] -5.8

Pb/Sci ONLY, no other modules

- Fit result: Meas [MeV] = $18.2(\pm 0.6) \times N$ [GeV] $-6.2(\pm 0.2)$

- Parameter for Pb/SI has large correction from the previous estimation.
- Parameters for silicon shows a small sample-energy dependence.

Implementation in DD4hep:

- Implementation of the 1st-version ZDC Geometry
 - Based on the slides that I have, should be similar enought, if not identical
- Try to reproduce the result of Shima with the first design.

Result of Shima

My parameterization:

•

W/SI: 0.0988 * (1 - 0.007 * (E_{SI} - 500)/1000)

Pb/SI: 0.3952 * (1 + 0.03 * (E_{SI} - 50)/100)

Shima's parameterization:

- W/SI: Average * (1-0.008*(E_{si}-500)/1000)
- Pb/SI: Average * (1+0.04*(E_{SI}-50)/100)

Made-up slopes by eye. Optimisation is needed in future.

- Six energy settings (GeV): (10, 20, 50, 100, 200, 300)
- The energy deposited in the crystal is simply added to the calibrated energy from the other modules.

Gaussian fit of E_{reco} / E_{Gen}

Mean (E^{reco}/E^N)

0.95

0.9

0.85

0.8

0.75^L

1.02

0.98

0.96

0.94

0.92

0.9

0.88

0.86

0

50

100

150

Mean (E_{Reco}/E_{Gen})

50

This fit: $1.04 - 0.54/\sqrt{E}$

250

300 Energy (GeV)

200

Result not as good as what Shima had, but acceptable

- More cost-effective design
- > 1st Silicon & crystal calorimeter:

> Silicon Pixel lateral size (x, y) = (4, 3) mm

• Smaller lateral dimension (x, y) = (56, 54) cm.

- ➢ W-Si imagine calorimeter
 - Smaller lateral dimension
 (x, y) = (56, 54) cm.
 - Smaller number of layers $1X_0 \times 22 \rightarrow 2X_0 \times 12$ layers

- Pb-Scintillator + fused silica
 - Towers of 10cm x 10cm x 48cm, each module is 60cm x 60cm x 48cm
 - 4 modules
 - Not yet have the implementation of fused silica – only scintillator now
- Pb-Si modules removed

Energy Resolution

- Use particle gun to generate neutrons of different energy
 - Position at the front of ZDC, at angle along the ZDC center
 - Five different energy settings: (10, 20, 50, 100, 150) GeV
 - 1000 events for each setting
- Do calibration with linear fitter

 $E_{rec.} = c_1 E_{SiPix} + c_2 E_{Crystal} + c_3 E_{WSi} + c_4 E_{PbScint} + b$

Energy Resolution

➤ Test suggested → modify the ratio of the thickness of Pb:Scinitllator to 4:1

DESY 87-041 FTUAM-EP-87-03 May 1987 ISSN 0418-9833

PERFORMANCE OF A COMPENSATING

LEAD-SCINTILLATOR HADRONIC CALORIMETER

E.Bernardi¹, G.Drews¹, M.A.Garcia², R.Klanner¹, U.Kötz¹, G.Levman³, M.Lomperski⁴, D.Lüke¹, E.Ros², F.Selonke¹, H.Tiecke⁵, M.Tsirou⁴, W.Vogel⁶

Abstract

We have built a sandwich calorimeter consisting of 10 mm thick lead plates and 2.5 mm thick scintillator sheets. The thickness ratio between lead and scintillator was optimized to achieve a good energy resolution for hadrons. We have exposed this calorimeter to electrons, hadrons and muons in the energy range between 3 and 75 GeV, obtaining an average energy resolution of $23\%/\sqrt{E}$ for electrons and $44\%/\sqrt{E}$ for hadrons. For energies above 10 GeV and after leakage corrections, the ratio of electron response to hadron response is 1.05.

New ZDC Goemetry

17

New ZDC Goemetry

Removing the last block deteriorates energy resolution
 Still acceptable. Seeking for other possibilities.

- A series of resolution studies have been done for different ZDC designs
 - Previous observation of Shima has been confirmed using DD4hep
 - Reasonable energy resolution \rightarrow optimization required
- Next Steps
 - Test of different ideas that within the size limit
 - Implementation of reconstruction
 - Position resolution
 - Shower development and the place for the imaging part of HCAL

New group expressing interest in ZDC simulation work: Group of Kentaro Kawade from Shinshu University Status of constructing a ZDC EMCal for beam tests using LYSO crystals

Progress for the ZDC EMCal

- The fund for constructing an EMCal prototype for the ePIC ZDC using the LYSO crystals is in place
- The front-face cross-section of LYSO crystals was determined
- Standalone G4 simulation was set up and has been used to check detector performance

SiPM size

Active area: 6mm x 6mm Total area: 7mm x 7mm SiPMs are available at NCU

> 2 2

Front face cross-section of LYSO crystals

 thickness of 3M Enhanced Specular Reflector Film (ESR) and optical adhesive: 80μm

Readout

- The readout board was designed by Chih-Hsun Lin of Academia Sinica
- 128 channels
- Trigger:
 - self-triggered
 - can accept external timing signals \rightarrow need to be studied
 - may take external triggers → need to be studied
- An adapter board is needed to fit our geometry, host the 8x8 SiPM array, and transmit signal from SiPMs to readout the board
 - will be designed after the LYSO crystals are ordered

Event displays in Geant4

LYSO PbWO4

25

- Crystal dimension (front face): 7mm x 7mm
- Crystal length: 88mm

- Crystal array: 8x8
- Beam: 900 MeV positrons

Energy deposit and shower profile

2

 96% of energy is contained within the 5x5 array

- Simulation needs to be redone with the exact $1X_0 \mbox{ for } PbWO_4$

Light yield estimation

- assuming light collection efficiency: 25% and photon detection efficiency: 20%
- length of crystal: 88mm
- LYSO: 500MeV x 40000 photons/MeV x 0.2 x 0.25 = 1,000,000 photons
- PbWO₄: 500MeV x 200 photons/MeV x 0.2 x 0.25 = 5000 photons

Fired microcells vs # of photons

- Need the fraction of fired microcells of a SiPM below 70% for a linear response
 - 2 8

Saturation effect for the SiPM

- Based on the current estimation for 900 MeV positrons, we will have the saturation effect for the central crystal
- According to the discussion in the ePIC ZDC meeting, light collection efficiency may not be as high as 25%
 - need to be studied
- In addition, an optical filter can be added to suppress the light yield

Plans and timeline

- Place the order for the LYSO crystals
 - have been negotiating the price with the producer
- Design an adapter board for the SiPM array
- Construct and test the prototype with cosmic rays, lasers, and maybe low-energy proton beams in Taiwan
- Conduct beam tests in Japan

Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb
order cystals	 design an adapter board crystal production 		construct the prototype	test with cosmic rays, lasers and proton beams		beam test at ELPF	

Summary

- Constructing a prototype for ZDC EMCal using LYSO crystals is in progress
- An array of 8x8 crystals will be built with a front-face cross-section of 7mm × 7mm for a single crystal
- An adapter board will be designed to host the SiPM array
- Readout electronics are almost in place
- Plan to test this prototype with cosmic rays, lasers, and possibly low-energy proton beams in Taiwan between November 2023 and January 2024
- We target to have a beam test at ELPF in Japan in February 2024