

Bρ-defined Isochronous Mass Spectrometry and Mass Measurements of Short-lived Nuclides at CSRe-Lanzhou

- 1. Principle of ${\it B}\rho$ -defined IMS
- 2. Velocity determination with two TOF detectors
- 3. Realization of $\pmb{B}\rho\text{-defined}$ IMS
- 4. New masses from the $\boldsymbol{B}\rho$ -defined IMS
- 5. Summary

Yu-Hu Zhang (张玉虎)

Institute of Modern Physics, Chinese Academy of Sciences Lanzhou 730000, China

Conventional IMS $(\gamma = \gamma_t)$

$$\frac{\Delta T}{T} = \frac{1}{\gamma^2} \frac{\Delta(m/q)}{m/q} + \left(\frac{1}{\gamma_t^2} - \frac{1}{\gamma^2}\right) \frac{\Delta(B\rho)}{B\rho}$$

$$\gamma_t^{-2} = \frac{dC/C}{d(B\rho)/(B\rho)}$$

γ_t : machine parameter determined by beam optics

Limitation of conventional IMS

⁵⁸Ni beam

Accuracy of velocity determination is of top importance

Accuracy of velocity determination is of top importance

Accuracy of velocity determination is of top importance

IMP

Δt_{exp} determinations considering betatron oscillation of stored ions

 $t_{fit}(N) = \sum_{i=0}^{i=3} a_i \cdot N^i$ + $A_x \cdot sin[2\pi(Q_{x0}N + Q_{x1}N^2) + \varphi_x]$ + $A_y \cdot sin[2\pi(Q_{y0}N + Q_{y1}N^2) + \varphi_y]$

- The polynomial function describes ion motion with a mean orbital length
- The sine-like terms describe the periodic time fluctuations due to betatron oscillations.

Δt_{exp} determinations considering betatron oscillation of stored ions

 $t_{fit}(N) = \sum_{i=0}^{i=3} a_i \cdot N^i$ + $A_x \cdot sin[2\pi(Q_{x0}N + Q_{x1}N^2) + \varphi_x]$ + $A_y \cdot sin[2\pi(Q_{y0}N + Q_{y1}N^2) + \varphi_y]$

- The polynomial function describes ion motion with a mean orbital length
- The sine-like terms describe the periodic time fluctuations due to betatron oscillations.

$$t_{fit}(N) = \sum_{i=0}^{3} a_i \cdot N^i + A_x \sin[2\pi(Q_{x0}N + Q_{x1}N^2) + \varphi_x] + A_y \sin[2\pi(Q_{y0}N + Q_{y1}N^2) + \varphi_y]$$

PHYSICAL REVIEW ACCELERATORS AND BEAMS 24, 042802 (2021)

Editors' Suggestion

In-ring velocity measurement for isochronous mass spectrometry

X. Zhou^(b),^{1,2} M. Zhang,^{1,2} M. Wang,^{1,2,*} Y. H. Zhang,^{1,2,†} Y. J. Yuan,^{1,2,‡} X. L. Yan,^{1,§} X. H. Zhou,^{1,2} H. S. Xu,^{1,2} X. C. Chen,¹ Y. M. Xing,¹ R. J. Chen,^{1,3} X. Xu,^{4,1} P. Shuai,¹ C. Y. Fu,¹ Q. Zeng,^{1,5} M. Z. Sun,¹ H. F. Li,^{1,2} Q. Wang,^{1,2} T. Bao,¹ M. Si,^{1,2,6} H. Y. Deng,^{1,2} M. Z. Liu,^{1,2} T. Liao,^{1,2} J. Y. Shi,^{1,2} Y. N. Song,^{1,2} J. C. Yang,¹ W. W. Ge,¹ Yu. A. Litvinov,^{1,3} S. A. Litvinov,^{1,3} R. S. Sidhu,³ T. Yamaguchi,⁷ S. Omika,⁷ K. Wakayama,⁷ S. Suzuki,^{1,8} and T. Moriguchi⁸ ¹CAS Key Laboratory of High Precision Nuclear Spectroscopy, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China ²School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China ³GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany ⁴School of Physics, Xi'an Jiaotong University, Xi'an 710049, China ⁵School of Nuclear Science and Engineering, East China University of Technology, Nanchang 330013, China ⁶Université Paris-Saclay, CNRS/IN2P3, IJCLab, F-91405 Orsay, France ⁷Department of Physics, Saitama University, Saitama 338-8570, Japan ⁸Institute of Physics, University of Tsukuba, Ibaraki 305-8571, Japan

Logic of mass determinations

Systematic errors are due to biased L and Δt_d in the velocity determination

$$v = \frac{L}{\Delta t_{exp} - \Delta t_d}$$

• Calibration with known-mass nuclei in order to find the correct L and Δt_d

L and Δt_d determinations

• Procedure: Minimize the χ^2 by varying *L* and Δt_d

$$\chi^{2} = \frac{1}{N_{c}} \cdot \sum_{i} \frac{\left(ME_{exp}^{i} - ME_{AME}^{i}\right)^{2}}{\sigma\left(ME_{exp}^{i}\right)^{2}}$$

3. Realization of *B*ρ**-defined IMS**

L = 18037 mm

 $\Delta t_d = 101.6 \, ps$

Using the new L and Δt_d values:

Re-recalculate the {(Bρ)ⁱ_{exp}, Cⁱ_{exp}} data using known-mass nuclei.
 Fit the {(Bρ)ⁱ_{exp}, Cⁱ_{exp}} data using
 f(C) = (Bρ)₀ ⋅ (C/C₀)^K + a₁ ⋅ exp[-a₂ ⋅ (C - C₀)]
 Individual m/a determinations via

Individual m/q determinations via

$$(m/q)_{exp}^{i} = \frac{f(C_{exp}^{l})}{(\gamma v)_{exp}^{i}}, \qquad i = 1, 2, 3, \dots N_{t}$$

Error estimation

$$\gamma_t^2 = \frac{d(B\rho)/(B\rho)}{dC/C} = \frac{C}{f(C)} \cdot \frac{df(C)}{dC}$$

$$\sigma_{B\rho}(\gamma,\gamma_t) = b_0 + b_1 \cdot (\gamma^2 - \gamma_t^2) + b_2 \cdot (\gamma^2 - \gamma_t^2)^2$$

$$\frac{\sigma[(m/q)_{exp}^i]}{(m/q)_{exp}^i} = \frac{\sigma_{B\rho}(\gamma_{exp}^i, \gamma_t^i)}{f(C_{exp}^i)} , i = 1, 2, 3 \dots N_t.$$

1.96

Mass resolving powers are significantly improved after field drift correction for all nuclides in the large m/q-range of $\Delta(m/q) \approx 0.10 ue^{-1}$

轨道长度区间 (128.70, 129.05)m, 动量接受 0.4%

3. Realization of *B*ρ**-defined IMS**

轨道长度区间 (128.80, 128.95)m, 动量接受度 0.2%

轨道长度区间 (128.85, 128.90)m, 动量接受度 0.08%

600

500 ·

400

300 -

200

100

-100

-200

-300

-400

-500

-600 -

2.52

2.54

2.56

2.58

0

references [keV]

Щ

ME_{IMS}.

m/q

2.60

2.62

2.64

2.68

2.66

Re-determined masses of $T_z = -1$ nuclei

Check the mass accuracy of the $B\rho$ -defined IMS

Comparison with MR-TOF-MS@RIKEN

Advantages of *B***ρ-defined IMS**

- 1) Fast measurement: $t_{exp} \approx 0.1 ms$
- 2) High sensitivity: *a single ion*, $\sigma_m \approx (3 \sim 5) \times q$ (keV)
- 3) High efficiency: *tens of ions in a single run*
- 4) High precision: *on par with PTMS for short-lived nuclei*
- 5) Zero background: *background-free measurements*

Letter

B *ρ*-defined isochronous mass spectrometry: An approach for high-precision mass measurements of short-lived nuclei

M. Wang^{1,2,*} M. Zhang,^{1,2} X. Zhou,^{1,2} Y. H. Zhang^{1,2,†} Yu. A. Litvinov,^{1,3,‡} H. S. Xu,^{1,2} R. J. Chen,^{1,3} H. Y. Deng,^{1,2} C. Y. Fu,¹ W. W. Ge,¹ H. F. Li,^{1,2} T. Liao,^{1,2} S. A. Litvinov,^{1,3} P. Shuai,¹ J. Y. Shi,^{1,2} M. Si,^{1,2} R. S. Sidhu,³ Y. N. Song,^{1,2} M. Z. Sun,¹ S. Suzuki,¹ Q. Wang,^{1,2} Y. M. Xing,¹ X. Xu,¹ T. Yamaguchi,⁴ X. L. Yan,¹ J. C. Yang,^{1,2} Y. J. Yuan,^{1,2} Q. Zeng,⁵ and X. H. Zhou^{1,2}

Eur. Phys. J. A (2023) 59:27 https://doi.org/10.1140/epja/s10050-023-00928-6

Regular Article - Experimental Physics

*B***\rho-defined isochronous mass spectrometry** and mass measurements of ⁵⁸Ni fragments

M. Zhang^{1,2}, X. Zhou^{1,2}, M. Wang^{1,2,a}, Y. H. Zhang^{1,2,b}, Yu. A. Litvinov^{1,3,c}, H. S. Xu^{1,2}, R. J. Chen^{1,3}, H. Y. Deng^{1,2}, C. Y. Fu¹, W. W. Ge¹, H. F. Li^{1,2}, T. Liao^{1,2}, S. A. Litvinov^{3,1}, P. Shuai¹, J. Y. Shi^{1,2}, R. S. Sidhu³, Y. N. Song^{1,2}, M. Z. Sun¹, S. Suzuki¹, Q. Wang^{1,2}, Y. M. Xing¹, X. Xu¹, T. Yamaguchi⁴, X. L. Yan¹, J. C. Yang^{1,2}, Y. J. Yuan^{1,2}, Q. Zeng⁵, X. H. Zhou^{1,2}

4. New masses from the $B\rho$ -defined IMS

M. Zhang et al., Eur. Phys. J. A 59: 27(2023)

⁵⁸Ni beam

Table 1 Experimental mass excesses (MEs) obtained from this work (third column), from an earlier CSRe measurement (fourth column) [19,39–41] and from the literatures (sixth column). Also the

recent Penning-trap measurements for ${}^{44g,44m}V$ [42], ${}^{52g,52m}Co$ [43], ${}^{56}Cu$ [44], ${}^{51}Fe$ [45] and AME2016 for ${}^{43}Ti$ [46] are included. All ME units are in keV

Number of events	ME This work	ME Earlier CSRe	ΔME_{CSRe}	ME Literature	$ME_{CSRe} - ME_{Lit}$
334	-23800.4(71)	-23827(20)	-26(21)	-23804.9(80) [42]	-4.5(110)
267	-23534.3(73)	-23541(19)	-6(20)	-23537.0(55) [42]	-2.7(91)
745	-29477.2(26)	-29471(11)	6(11)		
685	-29290.4(29)	-29299(7)	-9(8)		
782	-34475.8(29)	-34477(6)	-1(7)		
609	-34352.6(55)	-34361(8)	-8(10)	-34331.6(66) [43]	21(9)
236	-33973.0(106)	-33974(10)	-2(15)	-33958(11) [43]	15(15)
1254	-39285.4(27)	-39278.3(40)	7(5)		
294	-38622.6(60)	-38643(15)	-21(16)	-38626.7(71) [44]	-3.9(93)
25	-15724.3(187)	-15697.5(279)	27(37)		
9	-17899.3(316)	-17916.4(428)	-17(53)		
57	-19474.6(110)	-19514.8(354)	-40(37)		
18	-22560.8(192)	-22566.4(317)	-5.6(370)		
86	-24671.6(84)	-24750.7(242)	-79(27)		
48	-27386.0(115)	-27342.1(484)	44(50)		
168	-29613.7(58)	-29630.8(252)	-17(26)		
11	-31807.0(248)	-31635(156)	172(158)		
757	-29302.2(42)	-29306(9)	-4(10)	-29321(7) [46]	19(8)
108	-40201.9(159)	-40198(14)	4(21)	-40189.2(14) [45]	13(16)
	Number of events 334 267 745 685 782 609 236 1254 294 25 9 57 18 86 48 168 11 757 108	Number of eventsME This work 334 $-23800.4(71)$ 267 $-23534.3(73)$ 745 $-29477.2(26)$ 685 $-29290.4(29)$ 782 $-34475.8(29)$ 609 $-34352.6(55)$ 236 $-33973.0(106)$ 1254 $-39285.4(27)$ 294 $-38622.6(60)$ 25 $-15724.3(187)$ 9 $-17899.3(316)$ 57 $-19474.6(110)$ 18 $-22560.8(192)$ 86 $-24671.6(84)$ 48 $-27386.0(115)$ 168 $-29613.7(58)$ 11 $-31807.0(248)$ 757 $-29302.2(42)$ 108 $-40201.9(159)$	Number of eventsME This workME Earlier CSRe 334 $-23800.4(71)$ $-23827(20)$ 267 $-23534.3(73)$ $-23541(19)$ 745 $-29477.2(26)$ $-29471(11)$ 685 $-29290.4(29)$ $-29299(7)$ 782 $-34475.8(29)$ $-34477(6)$ 609 $-34352.6(55)$ $-34361(8)$ 236 $-33973.0(106)$ $-33974(10)$ 1254 $-39285.4(27)$ $-39278.3(40)$ 294 $-38622.6(60)$ $-38643(15)$ 25 $-15724.3(187)$ $-15697.5(279)$ 9 $-17899.3(316)$ $-17916.4(428)$ 57 $-19474.6(110)$ $-19514.8(354)$ 18 $-22560.8(192)$ $-22566.4(317)$ 86 $-24671.6(84)$ $-24750.7(242)$ 48 $-27386.0(115)$ $-27342.1(484)$ 168 $-29613.7(58)$ $-29630.8(252)$ 11 $-31807.0(248)$ $-31635(156)$ 757 $-29302.2(42)$ $-29306(9)$ 108 $-40201.9(159)$ $-40198(14)$	Number of eventsME This workME Earlier CSRe ΔME_{CSRe} 334-23800.4(71)-23827(20)-26(21)267-23534.3(73)-23541(19)-6(20)745-29477.2(26)-29471(11)6(11)685-29290.4(29)-29299(7)-9(8)782-34475.8(29)-34477(6)-1(7)609-34352.6(55)-34361(8)-8(10)236-33973.0(106)-33974(10)-2(15)1254-39285.4(27)-39278.3(40)7(5)294-38622.6(60)-38643(15)-21(16)25-15724.3(187)-15697.5(279)27(37)9-17899.3(316)-17916.4(428)-17(53)57-19474.6(110)-19514.8(354)-40(37)18-22560.8(192)-22566.4(317)-5.6(370)86-24671.6(84)-24750.7(242)-79(27)48-27386.0(115)-27342.1(484)44(50)168-29613.7(58)-29630.8(252)-17(26)11-31807.0(248)-31635(156)172(158)757-29302.2(42)-29306(9)-4(10)108-40201.9(159)-40198(14)4(21)	Number of eventsME This workME Earlier CSRe ΔME_{CSRe} ME Literature334-23800.4(71)-23827(20)-26(21)-23804.9(80) [42]267-23534.3(73)-23541(19)-6(20)-23537.0(55) [42]745-29477.2(26)-29471(11)6(11)685-29290.4(29)-29299(7)-9(8)782-34475.8(29)-34477(6)-1(7)609-34352.6(55)-34361(8)-8(10)-34331.6(66) [43]236-33973.0(106)-33974(10)-2(15)-33958(11) [43]1254-39285.4(27)-39278.3(40)7(5)294-38622.6(60)-38643(15)-21(16)-38626.7(71) [44]25-15724.3(187)-15697.5(279)27(37)9-17899.3(316)-17916.4(428)-17(53)57-19474.6(110)-19514.8(354)-40(37)18-22560.8(192)-22566.4(317)-5.6(370)86-24671.6(84)-24750.7(242)-79(27)48-27386.0(115)-27342.1(484)44(50)168-29613.7(58)-29630.8(252)-17(26)11-31807.0(248)-31635(156)172(158)757-29302.2(42)-29306(9)-4(10)-29321(7) [46]108-40201.9(159)-40198(14)4(21)-40189.2(14) [45]

⁷⁸Kr beam

M. Wang et al., Phys. Rev. Lett. 130, 192501 (2023)

Atom	Counts	ME _{IMS} (keV)	ME _{AME'20} (keV)	$\Delta ME (keV)$
⁵⁸ Zn	51	-42248(36)	-42300(50)	51(62)
⁶⁰ Ga	32	-40034(46)	$-39590(200)^{b}$	$-440(210)^{b}$
⁶² Ge	47	-42289(37)	$-42140(140)^{b}$	$-150(140)^{b}$
⁶⁴ As ^a	6	-39710(110)	$-39530(200)^{b}$	$-170(230)^{b}$
⁶⁶ Se ^a	20	-41982(61)	$-41660(200)^{b}$	$-320(210)^{b}$
⁷⁰ Kr	4	-41320(140)	$-41100(200)^{\mathrm{b}}$	$-220(250)^{b}$
⁶¹ Ga	124	-47168(21)	-47 135(38)	-33(43)
⁶³ Gs ^a	279	-46978(15)	-46921(37)	-57(40)
⁶⁵ As ^a	33	-46806(42)	-46937(85)	131(95)
⁶⁷ Se ^a	174	-46549(20)	-46580(67)	32(70)
⁷¹ Kr	148	-46056(24)	-46327(129)	270(130)
⁷⁵ Sr	4	-46200(150)	-46620(220)	420(260)

⁵⁸Ni beam

M. Zhang et al., Eur. Phys. J. A 59: 27(2023)

⁷⁸Kr beam

The ground state mass of ⁷⁰Br (W.J. Huang et al., PRC submitted)

The ground state mass of ⁷⁰Br (W.J. Huang et al., PRC submitted)

The ground state mass of ⁷⁰Br (W.J. Huang et al., PRC submitted)

J. Savory et al., PRL 102, 132501 (2009)

rp Process and Masses of N≈Z≈34 Nuclides

TABLE II. Mass excess values (ME) in keV obtained with LEBIT, from AME'03 [28] and the difference $\Delta ME = ME_{AME'03} - ME_{LEBIT}$. Also given are new mass predictions for ⁷⁰Kr and ⁷¹Kr.

Species	ME _{LEBIT}	ME _{AME'03}	ΔME
⁶⁸ Se ⁷⁰ Se ⁷⁰ Br ⁷¹ Br	$\begin{array}{r} -54189.3(5) \\ -61929.7(1.6) \\ -51425(15) \\ -56502.4(5.4) \end{array}$	$ \begin{array}{r} -54210(30) \\ -62050(60) \\ -51430(310) \\ -57060(570) \\ \end{array} $	$-21(30) \\ -120(60) \\ -5(310) \\ -558(570)$
⁷⁰ Kr ⁷¹ Kr	ME _{LEBIT+CDE} -41 304(100) -46 025(100)	ME _{AME'03} -41 680(390) -46 920(650)	ΔME -376(403) 895(658)

PRC 70, 014310 (2004) $Q_{EC}(9+)=12.19 (\pm 7 \pm 4) \text{ MeV}$ $Q_{EC}(g.s.)=9.90(\pm 7 \pm 4) \text{ MeV}$ ME(gs)= -52.03 ($\pm 7 \pm 4$) MeV

57

IMP

IMP

The ground state mass of ⁷⁰Br (W.J. Huang et al., PRC submitted)

 $Ft \equiv ft(1 + \delta_R')(1 + \delta_{NS} - \delta_C)$

If CVC hypothesis is correct, the corrected Ft values should be same

Mirror symmetry of residual pn interaction

SV pn

M. Zhang et al., Eur. Phys. J. A 59: 27(2023)

Mirror symmetry of residual pn interaction

Local mass relationship

Bifurcation of residual pn interaction along the N=Z line

M. Wang et al., PRL 130, 192501 (2023)

Mass Measurement of Upper *fp*-Shell N = Z - 2 and N = Z - 1 Nuclei and the Importance of Three-Nucleon Force along the N = Z Line

 $T > 1.5-2 \text{ GK}, 6^8 \text{Se} - 7^0 \text{Kr}$ equilibrium

$$\lambda_{\text{total}} = \lambda_{\beta(Z,N)} + \left[Y_{\text{p}} \rho N_A \left(\frac{2\pi\hbar^2}{kT} \right)^{3/2} \right]^2 \left(\frac{1}{\mu_{(Z,N)} \mu_{(Z+1,N)}} \right)^{3/2} \frac{G_{(Z+2,N)}(T)}{4G_{(Z,N)}(T)} \\ \times \exp\left(\frac{Q_{(Z,N)(\text{p},\gamma)} + Q_{(Z+1,N)(\text{p},\gamma)}}{kT} \right) \lambda_{\beta(Z+2,N)}$$

Effective lifetimes of ⁶⁴Ge

 $T_{1/2}$ (⁶⁴Ge) = 63.7(2.5) (s)

63

Waiting point ⁶⁴Ge in the rp-process of Type I X-ray bursts

All Q-values of (p, γ) reaction around ⁶⁴Ge obtained

New light curve enables us to set new constraints on the optimal d and (1 + z) parameters

- the neutron star in GS1826-24 is 6.5% farther away (0.4 kpc=1300 ly) from us !
- reduced 1+z value indicates weaker gravitation than believed !

Mass and Radius are constrained

nature physics

6

Article

https://doi.org/10.1038/s41567-023-02034-2

Mass measurements show slowdown of rapid proton capture process at waiting-point nucleus ⁶⁴Ge

Received: 14 June 2022	X. Zhou ^{1,2} , M. Wang 🛛 ^{1,2} 🖂, Y. H. Zhang 🗗 ^{1,2} 🖂, Yu. A. Litvinov 🗗 ^{1,3} 🖂, Z. Meisel ⁴ ,
Accepted: 24 March 2023	K. Blaum \mathbf{O}^5 , X. H. Zhou ^{1,2} , S. Q. Hou $\mathbf{O}^{1,2,6}$, K. A. Li ¹ , H. S. Xu ^{1,2} , R. J. Chen ^{1,3} ,
Published online: 01 May 2023	$J. G. Li^1$, T. Liao ^{1,2} , S. A. Litvinov ^{1,3} , M. L. Liu ¹ , Y. F. Niu ¹ , P. Shuai ¹ , J. Y. Shi ^{1,2} ,
Check for updates	 Y. N. Song^{1,2}, M. Z. Sun¹, Q. Wang^{1,2}, Y. M. Xing¹, X. Xu¹, F. R. Xu¹⁰, X. L. Yan¹, J. C. Yang^{1,2}, Y. Yu^{1,2}, Q. Yuan¹⁰, Y. J. Yuan¹⁰, Q. Zeng¹¹, M. Zhang^{1,2} & S. Zhang¹⁰

- 1. *B*ρ-defined IMS has been established in CSRe which shows several advantages in mass measurement of short-lived nuclei
- 2. Masses of ⁷⁸Kr, ⁵⁸Ni, ³⁶Ar fragments have been measured, enabling to address several issues in nuclear structure and nuclear astrophysics
- 3. $B\rho$ -defined IMS will be installed in the SRing of HIAF facility and the masses of heavy and n-rich exotic nuclei will be touched in the future
- 4. We need close collaborations both in experiment and in theory

Thanks for your attention

原子核质量与核天体物理

