ZDC-h simulation

Yongsun Kim

Sejong University

2023.08.17

Outline

- We studied the response of hadronic calorimeter for neutron
- Simulation was done a standalone GEANT4 simulation, based on the dual read-out calorimeter package
- The goal of this study is to optimize the parameters for ZDC-h
 - Fiber size and spacing
 - Absorber structure: Capillary or fully filled
 - Material: Cu? Pb? Or what?
 - Detector dimension
 - Fiber species: Scintillating? Quartz? Or both?

Alice Focal-h as the reference

- Fiber spacing = 2.5mm
- Number of fiber $160^2 = 25600$
- All fibers are scintillating fibers

Neutron Beam

Simulated 10 - 150 GeV neutron beams

- Normal angle: 4m rad (arbitrary,)
- Caveat: no ZDC-e ahead in this study yet

Event display for a 50 GeV neutron

Ex) 80 x 80 x 1500 module particle: geantino

Performance plots

Photon counts by SiPM

Response to 50 GeV neutron

- $\Delta E/E = 6.3\%$
- Caveat: Quantum efficiency for readout is not considered, thus resolution is overestimated

Photon's arrival time to reach SiPM

Energy Scale and Resolution

Simulated 8 different neutron energy 10, 20, 50, 70, 90, 110, 130, 150 GeV

[# of photons]/[E_{neutron}] ratio is fixed here

SEJONG UNIVERSITY

Energy resolution Pb_scint

Dual readout case

Simulated 7 different neutron energy 10, 20, 50, 90, 110, 130, 150 GeV

- Quartz fiber: radiation hard, but resolution is too bad by itself
- The use of scintillating fiber is necessary to obtain expected resolution
- The resolution would be even worse if we account readout effect

Plan

- Two (important) missing items
 - Addition of ZDC-e ahead the ZDC-h simulation
 - Reproduce the quantum efficiency for SiPM
 - Any suggestion for this?
- Once these are deployed, we will vary the fiber size, spacing, and bundle numbers in the simulation to find the best parameters

Back ups

Calibration Based on 20 GeV neutron

- Energy is proportional to the number of photo-electrons
- Simulation is used to obtain in the scale factors

of photon = 11690 Energy = 20GeV

Scale factor = 20/11690

Scintillation Energy

Dual-readout calorimeter Fiber - scintillating : cherenkov 50 : 50

The major difficulty of measuring energy of hadronic showers comes from the fluctuation of EM fraction of a shower, f_em

f_em can be measured by implementing two different Channels with different h/e response in a calorimeter

Energy measured from scintillation channel vs Čerenkov channel for EM particle, $\pi \& p$

Resolution table

Energy Resolution	10 GeV	20 GeV	50 GeV	90 GeV	110 GeV	130 GeV	150 GeV
Only scint	12.6%	9.37%	5.41%	5.15%	4.63%	4.45%	4.28%
S & C Dual-readout	14.2%	10.2%	8.92%	7.82%	7.21%	7.12%	7.40%

- We will use 10 - 150 GeV neutrons in the MC

