News from AC-LGAD activity

RHIC and AGS Annual User's Meeting 08/24/2023

Satoshi Yano Hiroshima University SKCM²

EICUG meeting @ Warsaw

- 07/25-07/29 @ Warsaw University
 - EIC + ePIC sessions
- Goto-san, Shigaki-san, and Yano (3/110)
- Commissioning and detector R&D status
- DSC-AC-LGAD-TOF by Zhenyu (& Yano)
- Session chair of last day by Yano
- Met with Zhenyu and discuss TOF future and shared Japanese group intension

SUNDAY 23 JUL	MONDAY 24 JUL	TUESDAY 25 JUL	WEDNESDAY 26 JUL	THURSDAY 27 JUL	FRIDAY 28 JUL	SATURDAY 29 JUL	SUNDAY 30 JUL
Early Career Workshop	Early Career Workshop	EIC	EIC	ePIC	ePIC	ePIC	Trip 3
Early Career Workshop	Early Career Workshop	EIC	ePIC evening: Conference Dinner	ePIC evening: Trip 1	ePIC	Trip 2	Det II / IP8

AC-LGAD activity @ KEK

- 08/07-08/10 @ KEK with Nakamura-san •
- Kawade-san (Shinshu Univ.), Matsutanilacksquarekun (Hiroshima Univ.), and Yano
- We learned how to proceed the AC-• LGAD R&D

Test bench

Amp board

Test setup

- Radiation source (90 Sr O(1) MeV) lacksquare
 - MIP is available (realistic S/N) ____
 - It is difficult to control path length (worse timing resolution than realistic)
 - Easiest test bench setup
- IR laser lacksquare
 - Signal magnitude can be controlled with laser strength
 - Landau fluctuation noise doesn't exist (better timing resolution than MIP)
 - It is easy to control positioning and reference timing
- Beam (O(1-100) GeV/c) ullet
 - MIP is available (realistic S/N)
 - Injected position can be measured by an additional telescope system
 - Most accurate test but cannot be operated often

Improve radiation source test with collimators

- If the path length problem can be solved the radiation source method can measure accurate timing resolution easily
- Collimators can restrict beta radiation path length – $\sigma_{\text{timing}} = 40 \text{ ps} \rightarrow 28 \text{ ps}$ (analysis in progress)
- The trigger rate with ⁹⁰Sr (1M Bq), collimator1 and PMT is ~400 Hz, but adding collimator2 is O(1) Hz
- Design of the test bench with collimators by using GEANT4 is crucial to speed up the AC-LGAD R&D

- - Connectors
 - Ubuntu PC

Proposed Working Package Structure

News from TOF

Santa Cruz, University of Illinois at Chicago

- bTOF (Lv.5)
 - Zhenyu Ye
 - Satoshi Yano
 - Mathew Gignac
- ftof (Lv.5)
 - Mathieu Benoit
 - Wei Li
- Common system (Lv.5)
 - Zhangbu Xu
 - Andreas Jung

- Three Japanese people participated in the RICUG meeting in 2023 @ Warsaw We discussed how to contribute to the TOF project from the Japanese community ____
- AC-LGAD R&D exercise campaign with Nakamura has been done •
 - We learned how to proceed with the AC-LGAD R&D
 - It became clear what to buy to build the AC-LGAD test bench @ HU
 - (Before getting EICROC, we can use the KEK amplifier board)
- Satoshi Yano is one of the bTOF (Lv.5) leader lacksquare
- I am staying at BNL to learn how to proceed with the EICROC R&D

Purchase list

- HV for MCPMT: -4300V lacksquare
- HV (Back bias voltage) for sensor: -190 ~ -110 V \bullet
- LV for sensor: 6V \bullet
- Oscilloscope has SMA port x 8 ullet
- Circuit board of sensor has MCX port x 16 ullet
- LV is supplied to bord by 4 pin/banana cable ${\color{black}\bullet}$
- HV (BB) is supplied by LEMO cable ullet
- HV is supplied to MCPMT by SHV cable lacksquare
- and the other one has 50Ω resistivity to save oscilloscope)

Trigger signal from MCPMT is sent by SMA cable (the cable must be split into two ways one is an oscilloscope

