Development of tracking algorithm for sPHENIX INTT sPHENIX実験-中間飛跡検出器INTTを用いたトラッキングアルゴリズム開発について

Hinako Tsujibata (Nara Women's University) 2023.09.28 ALICE+sPHENIX+STAR+EIC-J Workshop

TABLE OF CONTENTS

- 1. sphenix
- 2. INTT
- 3. Tracking
- 4. Summary

SPHENIX

<u>sphenix</u>

@Blookhaven National Laboratory in the U.S. April 2023.

<Purpose>

Jet and Upsilon particles produced in collisions are measured to determine the properties of the QGP. <collision particle> Au+Au (200GeV)

Experiments using the heavy-ion collider RHIC, in commissioning since

INTT

INTermediate Tracker

- One of the three track detectors used in the sPHENIX experiment, located near the point of impact
- Strip sensor with a two-layer barrel structure
- Located 6~12cm from the beam pipe
- High time resolution and plays an important role in track reconstruction

INTT SILICON SENSOR

- <u>Silicon sensor</u> $78\mu m \times 320\mu m \times 320\mu m$ strips $\times 128$
- <u>Silicon sensor module</u> 26 silicon sensor
 - Type-A silicon sensor
 - Type-B silicon sensor

TRACKING

Tracking : reconstructing the trajectory using the hit position and beam spot, which is necessary to calculate p_T .

In this study, the tracking algorithm was developed using simulation results of pp collisions (200 GeV, no magnetic field).

TRACKING METHOD

- Select one point A on the inner barrel and one point B on the outer barrel and connect them with a line. (tracklet)
- 2. Determine the beam spot.
- Connect the three points (A, B, beam spot) by the least-squares method and make it a track.

HOW TO GET THE BEAM SPOT

- To find the beam spot, the distance of closest approach (DCA) between each tracklet and origin was calculated.
- Calculating 2D-DCA and L-DCA. 2D - DCA = $\vec{v} \times \vec{u} = \vec{u} \cdot \sin \phi$

 $L - DCA = \vec{v} \cdot \vec{u} = \vec{u} \cdot \cos \phi$

 Using L-DCA, the DCA position of the tracklet can be calculated.

 $DCA_X = L_{DCA} \times \vec{u}_x + A_x$

 $DCA_Y = L_{DCA} \times \vec{u}_y + A_y$

 $DCA_Z = L_{DCA} \times \vec{u}_z + A_z$

The beam spot is the average of the DCA.

TRACKLET

- Tracklets are defined as those with $|\phi| > 0.1$.

Some tracklets share hit points. Some DCA_z s seem to be extremely far₉ from the beam spot.

DCA CUT

- A DCA cut was applied to exclude those extremely far from the beam spot.
- In this case, only tracklets within 1 sigma from the 2D-DCA mean and DCA_z

were used.

ELIMINATION OF POINT SHAREING

 If the tracklets share a point, the one whose 2D-DCA is smaller is used.

RESULT OF TRACKING

- Blue : hits and tracklets Green : reconstructed tracks
- Glay : eliminated hits and tracklets

SUMMARY

Tracking in simulations of pp collisions (no magnetic field).Done!

Next to do

Tracking in pp collisions with magnetic field and Au+Au collisions

BACK UP

DCA-z2D-DCA

