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• SACLA: LINAC-based XFEL facility, Injector to SPring-8


• Simultaneous operations of three beamlines (BL1, BL2, and BL3)


• Operate 6000 hours/year, with high availability (~100 users/year)

Introduction to SACLA
SACLA 
(The SPring-8 Angstrom Compact 
free electron LAser)

700 m

SPring-8

Injection to SPring-8

1500 m

Param BL2, BL3

Xray-FEL

BL1

EUV-FEL

Beam energy 6-8 GeV ~800 MeV

Photon  energy 4-22 keV 40-150 eV

Pulse Energy ~700 uJ ~50 uJ

Pulse  width < 10 fs ~ 30 fs

Rep. rate 60 Hz 60 Hz

3
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Introduction to SACLA 4

To SPring-8

XSBT

CeB  
Thermonic gun
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238/476 MHz 
cavity

L-corr L-band

C-corr S-band

BC1 BC2 BC3

C-band ~1.4 GeV

~8 GeVMain C-bandDeflector 
(C-band)

Undulator

BL2

BL1

BL3

Dump

B-mag

exp. hall

Z  120 m∼

Z  615 m∼



5Introduction to SACLA

Velocity bunch compression
E-field strength

Magnetic bunch compression

Low-E

High-E

Initial electron bunches (1 A, 1 ns) are highly compressed to short bunches (10 kA, 10 fs)

Z Z

CeB  
Thermonic gun
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238/476 MHz 
cavity

L-corr L-band

S-band

BC1 BC2 BC3

C-band ~1.4 GeV

Z  120 m∼

Z

180 ps

On-crest acc. at main C-band linac

C-corr



Difficulties in the beam tuning at SACLA

• Highly compressed beam due to 
non-linear and complex bunch 
compression process


• Non-gaussian beam 
(Typically two peaks)
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• Sensitive to a slight environmental change 
(temperature, humidity, etc…)


• Simultaneous operations of BL1, BL2, 
BL3, and SR injection by pulse-by-pulse 
distribution


• Tuning qualities depending on operators’ 
experiences

Electron beam Accelerator

Displacement from the bunch center [ m]μ

C
ur

re
nt

 [k
A

]

10 fs

Time structure of e-beam at SACLA 
(bunch compressed to 40 kA)

Simulation

To overcome them, we’ve established 
an optimizer based on the Gaussian 
Process Regressor, called GPR 
optimizer.

Bright part
GPR was a good starting point 
ex) easy to understand and control the behavior 
ex) easy to use libraries shared in a market 



Introduction to the GPR optimizer

• Optimizer routine


• Create a GP model with a set of initial data


• Calculate the maxima for the expected improvements (EI)


• Test the parameter set providing the maximum EI


• Update the GP model
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Gaussian fit Core calculations
y = f(x, θ) + ϵ

p(y* |x*, y, X, θ) =
p(y |X, y*, x*, θ) × p(y* |x*, θ)

p(y |X, θ)

y: Response function, : Gaussian noiseϵ

Bayes theorem

Posterior

Prior

αEI(x*) = ∫
∞

ymax

(y* − ymax)p(y* |x*, y, X, θ)dy*

Expected improvements
Hyper parameters

1D projection of 
 GP model



Usual operations of the beam tuning

• Weekly-based beam tuning with the GPR optimizer (python: PyTorch/BoTorch lib.)


• Easy to use for every operator with the GUI


• Save tuning time for operators


• Considering stability and reproducibility, 10 to 15 parameters are tuned 
simultaneously.
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Recent achievements with the GPR optimizer 9

• Optimization of spectral brightness


• Suppression of side-band peak contributions in XFEL spectrum


• Tuning of beam profiles at the SACLA injector section

Spectral width reduced by half and improved spectral brightness by 1.7 times

 Spectral-brightness optimization of an X-ray free-electron laser by machine-learning-based tuning,  
Eito Iwai et al. , JSR 30, 1048-1053, 2023

Object Function = 


 
 : uncertainty of the mean wavelength 

 : uncertainty of shot-by-shot pulse width

PulseEnergy [μJ]
σ [eV]

σ2 = σ2
mean + σ2

width
σmean
σwidth

Inline spectrometer with improved resolution

20~60  20 eV→10  6 eV→

GPR optimizer
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• Optimization of spectral brightness


• Suppression of side-band peak contributions in XFEL spectrum


• Tuning of beam profiles at the SACLA injector section

Recent achievements with the GPR optimizer

Side-band 
peak

History of side-band peak intensity

10~15%
~3%

Realize the user request to suppress the side-band peak in XFEL spectrum
Background

Some side-band peak contributions 
cannot be suppressed by the 
optimization of the spectral brightness.


Inputs

Maximize the mean spectral brightness 
weighted by the side-band peak 
intensity. 
(Lower weight for a large side-band 
peak intensity) 


Obj. func. = 
N

∑
i

wi
pulseEnergyi [μJ]

σi [eV]
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• Optimization of spectral brightness


• Suppression of side-band peak contributions in XFEL spectrum


• Tuning of beam profiles at the SACLA injector section

Recent achievements with the GPR optimizer

Realize an automatic tuning of 2D beam profiles at the injector section

Reference Detune

Optimized Undo-state

Background

Difficult to tune 2D profiles or their 1D projections

Biased by the dynamic range or gain settings


Inputs

Use reduced  for the residual between input pixel 
values and the reference pixel values


, 



: uncertainty of photon statistics


: pedestal fluctuation independent of outputs

χ2

χ2 = ∑
i ( xi − kxref

i

σ(xi) )
2

k = ∑
i

xi

xref
i

σ(xi)2 = σ2
p−stat(xi) + σ2

0
σp−stat(xi)
σ0
Insensitive to total charge, iris, exposure time, and 
range/gain settings



Difficulties in the GPR optimizer
• The optimizer is difficult to use during user operations because of large 

shot-by-shot fluctuations in XFEL pulse intensity.


• Making the step width narrower is not efficient


• Learned knowledge of parameter correlations is temporal and not used in 
the next-time beam tuning.
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Sudden drops during the optimization 
(Note: This is good in terms of the best-fit not 
being trapped in the local minimum. )

The optimizer tries to find the best-fit point 
without referencing the correlations found 
during previous beam tuning.

Measured value of L-band phase
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Concept of a new system
• Purpose: Faster beam tuning and automatic beam control during user time


• Learning strategy: Use the GP models obtained at each beam tuning to learn 
weights leading to the best parameter set depending on states


• Algorithm: At present, Vision-Transformer (VT) model 
“An image is worth 16 * 16 words:  Transformers for image recognition at scale” 
* The idea to use VT was suggested by Prof. Yuta Nakashima (Osaka Univ.)
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Object function

Parameter A (238MHz RF phase)
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Local phase space 
obtained with GPR

Best point

Learn weights leading 
to the best point



An idea to use VT ①

• Why Vision Transformer?


• Take into account the relationship 
between patches (parameters)


• High-speed calculations by 
parallelizing on a patch-by-patch basis
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Diagram Core: Attention mechanism

    Qh · Ki,h
T

=

Attention ( ) =  softmax (      / ) 

Attention is large if Q and K vectors are similar

q Σi Qh · Ki,h
T dk,i Vi

Query Key

Head (h)

Patch (i)

Input Attention

dk



An idea to use VT ②

• Inputs

• Parameter vectors are correlated with each other on a shot-by-shot basis.

• The vector elements are commutative.


• Outputs

• Prediction to indicate which parameters should be changed

Parameter 
vector ( ) J1

Parameter 
vector ( ) J2

Parameter 
vector ( ) Jn

M
 sh

ot
s

VT

Learning interface Outputs

N
 p
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s

0.1

0.0

0.2

0.5

P2

P1

P3

PN

C
ha

ng
e 

P N

Correlated

Commutative

Prior knowledge 
with GP models fed  
into the deep learning
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Tests with a simple model 16
Inputs

9 parameter vectors ( )




 ~  : -30 or 0 or 30,  ~  : 0 

 =  



 ( ) : 1 

x0, ⋯, x8
xi ∼ N(μi, σi)
μ0 μ3 μ4 μ7

μ8 exp (−
x2

0 + x2
1 + x2

2 + x2
3

σ2
x )

σx = 80
σi 0 ≤ i ≤ 8

7 × 7 7 × 7 7 × 7

Patch 0 Patch 1 Patch 8

V
is

io
n 

Tr
an

sf
or

m
er

Obj. Func.

Best point 
(maximized )u8

 
= (30, 0, 0, 0)
(μ0, μ1, μ2, μ3)

 
= (-30, 0, 0, 0)
(μ0, μ1, μ2, μ3)  

= (0, 30, -30, 0)
(μ0, μ1, μ2, μ3)

Class 1

Class 2 Class 3

• Vision Transformer: python package, vit_pytorch 
(https://github.com/lucidrains/vit-pytorch)


• Test 1: Assuming a certain function over parameters ( ),  
check if the algorithm can recognize the current phase space.


• Test 2: Check if the agent can approach the best point from an 
arbitrary one with the learned weights.

x0 ∼ x8

Layers 4
Hidden size 64

MLP size 64
Head 4
Batch 16

Num class 81

VT model variants

ex.) RF phase



Tests with a simple model 17

Test1 Test2

Move a point

depending on a 

predicted class 
(add 10 or 0 to 


)
±

x0 ∼ x3 Starting point

90%

• Test 1: Assuming a certain function over parameters ( ),  check if the algorithm can 
recognize the current phase space.


• Test 2: Check if the agent can approach the best point from an arbitrary one with the learned 
weights.

x0 ∼ x8

Successfully learn the weights
example

Class 1 (30, 0, 0, 0): add -10 to 

Class 3 (0, 30, -30, 0): add -10/10 to /

x0
x1 x2

Successfully find 
the points around 
the best point

( )μ0, μ1, μ2, μ3



Development of the code management
• Three layers


• Application


• Change tuned parameters,  
different beamlines


• I/O


• Change facility-based 
configurations


• ML core


• Change GPR/VT methods


• Facility- or purpose-specific parts 
are isolated from the method part.


• Easy to replace the methods
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Application

I/O

ML core

gpoptimizer 
— w/ plots, or GUI —

SaclaOptimizationInterface

OptimizerInterfaceBase

MLcore

SaclaGPRegressor

Replace

(SaclaVT)



Summary
• The GPR optimizer has been successfully implemented and utilized in the 

XFEL facility, SACLA.


• We reduce spectral width by half and improve spectral brightness by 
1.7 times.


• We are able to suppress side-band peak contributions at a ~3% level.


• We are also able to tune 2D profiles with the GPR optimizer.


• We have been developing the Vision-Transformer-based deep learning 
method for a more efficient beam control with ML.


• Making use of the GP models obtained in the usual beam tuning is 
expected to enhance the method's performance.


• We conducted a simple test to simulate the parameter tuning with VT. 
The results seem to be encouraging.
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Summary
• The GPR optimizer has been successfully implemented and utilized in the 

XFEL facility, SACLA.


• We reduce spectral width by half and improve spectral brightness by 1.7 
times.


• We are able to suppress side-band peak contributions at a ~3% level.


• We have been developing the Vision-Transformer-based deep learning 
method for a more efficient beam control with ML.


• Making use of the GP models obtained in the usual beam tuning is 
expected to enhance the method's performance.


• Preparation of meaningful inputs is key to achieving a higher performance of 
ML. To this end, we have been developing a longitudinal beam diagnostics 
system that will provide energy-time information on the electron beam. 


• We aim to generate a short and stable XFEL pulse at a ~1 fs scale by 
combining the existing and future ML methods. 
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Development of beam longitudinal diagnostics system

• Motivation: Diagnose the ~10 fs time structure of the electron beam 
Detect a longitudinal lasing part in electron bunches   
Realize a stable short XFEL pulse (~1 fs) to dig into “atto-physics”


• Requirements: ~1 fs time resolution with 2~3 m-long cavities in total


• Schedule: Design (2023), Construction (2024), High power test (2025), 
Installation and Operation (2026)
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H. Maesaka, et.al., PRAB 21, 050703 (2018)

Time

Energy

SCM 
(YAG)

BL3

RF transverse deflector cavity

X
Z

exp. hall

B-magnet

Undulator



Synagy between ML and the beam diagnostics system
• Essences to enhance ML performances


• Sophisticated algorithms 


• Meaningful inputs (as demonstrated in the “recent achievements”)
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Inputs (diagnostics system) GPR VT

Stable & Short pulse

Short XFEL pulse

ML Development of hardwares
More input options

Higher performances


