2023.11.28 加速器・ビーム物理の機械学習ワークショップ2023 Analysis of nuclear emulsion images for hypernuclear physics using machine learning

International Center for Synchrotron Radiation Innovation Smart, Tohoku University Junya Yoshida

Photographic emulsion sheet for visualizing charged particle tracks

Developed emulsion sheet

Optical microscope

Micrograph

Datasize of emulsion sheet:		
1 sheet	= ~100 TB	
10 ³ sheets	= ~100 PB	

My research experience

2006-2008 Graduate student at Nagoya-U Imaging the interior of volcanoes using cosmic ray muons

2008-2013Ph. D. student at Nagoya-U**OPERA experiment aiming to detect neutrino oscillations**

- 2013-2017 Postdoc researcher at Gifu-U
- 2017-2020 Postdoctoral Fellow at Advanced Science Research Center, JAEA
- 2020-2022 Tohoku-U, RIKEN High energy nuclear physics lab.

Hypernuclear physics

2020-2022 RIKEN High energy nuclear physics lab.

Machine learning for hypernuclear physics, neutron imaging

2022 May- International Center for Synchrotron Radiation Innovation Smart, Tohoku-U Synchrotron radiation science

Phys. Lett. B 691 (2010) 138.

Double Λ hypernucleus

 Ξ hypernucleus

Hypernucleus, normal nucleus + hyperon

- Important for understanding generalized nuclear forces
- Strange quark: unstable on the earth (lifetime: $\sim 10^{-10}$ sec)
- Hyperons are generated by accelerator experiments

- Information on the interaction from its binding energy with normal nucleus
- Emulsion sheet is a suitable detector to detect their production and decay at rest

J-PARC E07, a hybrid emulsion experiment to investigate double hypernuclei

Automated Track Following https://youtu.be/3fiWI5tDx2U

In the 1998 experiment: ~5k tracks for ~7 years. J-PARC E07: **~40k tracks** for **~2 years**.

x 118 modules

Detected double strangeness events

14 events in the former experiments 33 events in J-PARC E07

Overall scanning method

Detectable events by the hybrid method are estimated to be ~10% of all.

Twice the probability of (K⁻,K⁺) reaction

- Single Λ hypernuclear events (~10⁶ / sheet)
- Even if they are not triggered, they are certainly recorded in the emulsion sheets
- Exhaustive search using image recognition
- Development began around 2010.

The first observation of the Ξ hypernucleus

Vertex Picker, Image processing for vertex-like shape detection

- Line segment detection
- Vertexes where line segment endpoints are concentrated.
- Image processing parameters were set to detect found double hypernuclear events.

- Used to detect alpha decay events as the 1st step
 - U, Th in gelatin
 - Calibration source for the correspondence between track length and kinetic energy

Performance of alpha decay selection using line information.

 \rightarrow Development of a CNN-based image classifier.

Image classification using Convolutional Neural Network (CNN)

J. Yoshida, et al. Nucl. Inst. and Meth, A 989 (2021) 164930

Comparison

	Precision (Purity)	Recall (Efficiency)	Number of Selected images
Conventional method	0.081 ± 0.006	0.788 ± 0.056	2489
CNN (Average of 4 trials)	0.547 ± 0.025	0.788	366 ± 18
			6.8 \pm 0.6 times smaller

Object detection using Region based CNN

Mask R-CNN https://arxiv.org/abs/1703.06870

https://github.com/multimodallearning/pytorch-mask-rcnn

Displaying frames and region where detected objects are located

• One can train dedicated models using $10^3 \sim 10^4$ pairs of images and masks.

A Pedestrian dataset by Pennsylvania and Fudan Univ.

Our strategy

Object detection

How to collect training data for rare events?

→ Using

- Machine learning (Style Transfer)
- Physics simulation (GEANT4)

to generate training data without any actual example.

Synthesized images: from line to simulated images using Image Translation as an optical simulator.

Pix2Pix https://arxiv.org/abs/1611.07004

https://affinelayer.com/pixsrv/index.html

- Inverse transformation of Edge detection
- Recover the colors of the original image from the line drawing

Training using our data

Synthesized images: from line to simulated images using Image Translation as an optical simulator.

A. Kasagi et.al, N.I.M. A 1056 (2023) 168663

Transform

Line drawings of tracks using GEANT4

RGB channels for focused and adjacent depth layers

A. Kasagi et.al, N.I.M. A 1056 (2023) 168663

Application for alpha decay search

- Training a modified Mask R-CNN
 - 30k pairs of simulated image and mask are used.
 - Masks are created without manual annotation works.
- Mask R-CNN
 - Implemented by PyTorch
 - Backbone: ResNet50
 - Modified for our purposes

Performance

Efficiency =
$$\frac{(\text{Number of detected } \alpha_{\text{decay event}})}{(\text{Number of } \alpha_{\text{decay events in test dataset})}}$$

Purity =
$$\frac{(\text{Number of detected } \alpha_{\text{decay event}})}{(\text{Number of detected candidates})}$$
 Using eye search

	Efficiency [%]	Purity [%]
VertexPicker+CNN	40.8 ^{+ 5.6} _{-5.5}	8.9 + 1.1 - 1.2
Mask R-CNN	80.3 + 4.2 - 4.8	17.3 + 0.9 _ 1.0

In operation for physics research; hypertriton search

 0.13 ± 0.05 MeV, measured in the 1970s

Remeasuring using modern techniques E. Liu, ..., J. Yoshida et al., Eur. Phys. J. A (2021) 57:327

The 1st hypertriton event detected in an emulsion sheet of J-PARC E07 using ML

"New direction of hypernuclear physics" T.R Saito et.al., Nature Reviews Physics https://doi.org/10.1038/s42254-021-00371-w

Personal impression

Why does it work?

- Effective usage
 - Event search Alpha decay and decay event of hypertriton Image processing for micrograph of emulsion sheet
- Collaboration with experts of machine learning RIKEN, Rikkyo-U
- Timing and public understanding of machine learning Google bought Deepmind for \$650m (Jan. 2014) AlexNet on Caffe Chainer (Jul. 2015), TensorFlow (Nov. 2015), PyTorch (Oct. 2016) AlphaGo vs Lee Sedol (Mar. 2016)

Development issues

- Reduction of increased eye-check work
- Other decay modes of hypertriton
- Searching for double strangeness hypernuclei

My current work: construction of a new synchrotron radiation facility, NanoTerasu

This facility is being set up for operation in April 2024.

My recent interest

X-ray Optics

Accelerator Science

- Stabilization and tuning
- Nano-focusing
- Advanced measurement system

• Beam stabilization and tuning

- New material search
- Scintillator, tracking detector

A. Muneem, J. Yoshida, et al., Radiation Meas. 158 (2022) 106863

Summary

- Implemented deep learning-based image processing for event detection in nuclear emulsion sheets.
- Trained an object detector using training data generated through simulations and Image translation.
- Currently applied in physics analysis for:
 - Searching for alpha decay events used in calibration.
 - Measuring the binding energy of a Lambda particle in Hypertriton.
 - Searching for double-strangeness hypernuclear events.
- The author is currently involved in the launch of a synchrotron radiation facility while learning optical system control, accelerator science, and material science.
- Exploring applications of machine learning.
- Intending to develop measurement systems that support data-driven science.
- I would like to collaborate with you accelerator scientists.

E07 Collaboration (Author list of PTEP 2019, 021D02)

H. Ekawa^{1,2}, K. Agari³, J. K. Ahn⁴, T. Akaishi⁵, Y. Akazawa³, S. Ashikaga^{1,2}, B. Bassalleck⁶, S. Bleser⁷, Y. Endo⁸, Y. Fujikawa¹, N. Fujioka⁹, M. Fujita⁹, R. Goto⁸, Y. Han¹⁰, S. Hasegawa², T. Hashimoto², S. H. Hayakawa^{2,5}, T. Hayakawa⁵, E. Hayata¹, K. Hicks¹¹, E. Hirose³, M. Hirose¹, R. Honda⁹, K. Hoshino⁸, S. Hoshino⁵, K. Hosomi², S. H. Hwang¹², Y. Ichikawa², M. Ichikawa^{1,13}, M. Ieiri³, K. Imai², K. Inaba¹, Y. Ishikawa⁹, A. Iskendir⁵, H. Ito⁸, K. Ito¹⁴, W. S. Jung⁴, S. Kanatsuki¹, H. Kanauchi⁹, A. Kasagi⁸, T. Kawai¹⁵, M. H. Kim⁴, S. H. Kim⁴, S. Kinbara^{2,8}, R. Kiuchi¹⁶, H. Kobayashi⁸, K. Kobayashi⁵, T. Koike⁹, A. Koshikawa¹, J. Y. Lee¹⁷, J. W. Lee⁴, T. L. Ma¹⁸, S. Y. Matsumoto^{1,13}, M. Minakawa³, K. Miwa⁹, A. T. Moe¹⁹, T. J. Moon¹⁷, M. Moritsu³, Y. Nagase⁸, Y. Nakada⁵, M. Nakagawa⁵, D. Nakashima⁸, K. Nakazawa⁸, T. Nanamura^{1,2}, M. Naruki^{1,2}, A. N. L. Nyaw⁸, Y. Ogura⁹, M. Ohashi⁸, K. Oue⁵, S. Ozawa⁹, J. Pochodzalla^{7,20}, S. Y. Ryu²¹, H. Sako², Y. Sasaki⁹, S. Sato², Y. Sato³, F. Schupp⁷, K. Shirotori²¹, M. M. Soe²², M. K. Soe⁸, J. Y. Sohn²³, H. Sugimura²⁴, K. N. Suzuki^{1,2}, H. Takahashi³, T. Takahashi³, Y. Takahashi¹, T. Takeda¹, H. Tamura^{2,9}, K. Tanida², A. M. M. Theint⁸, K. T. Tint⁸, Y. Toyama⁹, M. Ukai³, E. Umezaki¹, T. Watabe¹⁴, K. Watanabe¹, T. O. Yamamoto², S. B. Yang⁴, C. S. Yoon²³, J. Yoshida², M. Yoshimoto⁸, D. H. Zhang¹⁸, and Z. Zhang¹⁸

¹Department of Physics, Kyoto University, ²Advanced Science Research Center, Japan Atomic Energy Agency, ³Institute of Particle and Nuclear Study (IPNS), High Energy Accelerator Research Organization (KEK), ⁴Department of Physics, Korea University, ⁵Department of Physics, Osaka University, ⁶Department of Physics and Astronomy, University of New Mexico, ⁷Helmholtz Institute Mainz, ⁸Physics Department, Gifu University, ⁹Department of Physics, Tohoku University, ¹⁰Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, ¹¹Department of Physics & Astronomy, Ohio University, ¹²Korea Research Institute of Standards and Science, ¹³RIKEN Cluster for Pioneering Research, ¹⁴Department of Physics, Nagoya University, ¹⁵RIKEN Nishina Center, ¹⁶Institute of High Energy Physics, ¹⁷Department of Physics, Seoul National University, ¹⁸Institute of Modern Physics, Shanxi Normal University, ¹⁹Department of Physics, Lashio University, ²⁰Institut für Kernphysik, Johannes Gutenberg-Universität, ²¹Research Center for Nuclear Physics, Osaka University, ²²Department of Physics, University of Yangon, ²³Research Institute of Natural Science, Gyeongsang National University, ²⁴Accelerator Laboratory, High EnergyAccelerator Research Organization (KEK)

Collaboration on machine learning for nuclear physics

Manami Nakagawa¹, Ayumi Kasagi^{1,2}, Enqiang Liu^{1,3,4}, Hiroyuki Ekawa¹, Junya Yoshida⁵, Wenbo Dou^{1,6}, Yan He^{1,11}, Abdul Muneem^{1,7}, Kazuma Nakazawa^{1,8}, Christophe Rappold⁹, Nami Saito¹, Takehiko R. Saito^{1,10,11}, Shohei Sugimoto^{1,6}, Masato Taki¹², Yoshiki K. Tanaka¹, He Wang¹, Yiming Gao^{1,3,4}, Ayari Yanai^{1,6}, and Masahiro Yoshimoto¹³

¹High Energy Nuclear Physics Laboratory, Cluster for Pioneering Research, RIKEN
²Graduate School of Engineering, Gifu University
³Institute of Modern Physics, Chinese Academy of Sciences
⁴School of Nuclear Science and Technology, University of Chinese Academy of Sciences
⁵Department of physics, Tohoku University
⁶Department of Physics, Saitama University
⁷Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology
⁸Faculty of Education, Gifu University
⁹Instituto de Estructura de la Materia, CSIC
¹⁰GSI Helmholtz Centre for Heavy Ion Research
¹¹School of Nuclear Science and Technology, Lanzhou University
¹²Graduate School of Artificial Intelligence and Science, Rikkyo University

一般向けの資料

プレスリリース

ハイパー核の束縛エネルギー精密測定へ(2021.09.14) -ハイパートライトンパズルの解明に向けて-

「**グザイ核」の内部構造、ついに観測成功**(2021.07.26) 原子核の成り立ちや中性子星の構造の理解に新たな知見

稀少な超原子核「グザイ核」の質量を初めて決定(2021.03.02) 原子核の成り立ちや中性子星の構造を理解する新たな知見

新種の超原子核(二重ラムダ核)を発見(2019.02.26) - 中性子星の内部構造の謎に迫る - 「美濃イベント」と命名

Automated Track Following https://youtu.be/3fiWI5tDx2U

国立科学博物館 企画展「加速器」 https://youtu.be/il4iUwqf7dQ?t=670 朝日新聞岐阜版

