

RIKEN, July 2-5, 2024

Cluster transfer and cluster emission in multinucleon transfer reactions

Zhao-Qing Feng

(School of Physics and Optoelectronics, South China University of Technology)

Collaborator: Zi-Han Wang, Peng-Hui Chen

Email: fengzhq@scut.edu.cn, Tel: 020-87114086

Outline

- Brief overview of MNT reactions
- Theoretical description of MNT reactions based on the dinuclear system model
- Results and discussion
- ✓ Fusion-evaporation reactions
- ✓ Yields, total kinetic energy spectra and angular distribution in MNT reactions
- ✓ Cluster transfer and cluster emission in MNT reactions
- Summary and perspective

Multinucleon transfer reactions-quasi-

elastic scattering, quasifission, deep inelastic collisions

Dubna experiments, Nuclear Physics A 176 (1971) 284-288, A 211 (1973) 299-309, A 215 (1973) 91-108

ENERGY (MeV)

2.N

Nuclear Physics A176 (1971) 284-288; C North-Holland Publishing Co., Amsterdam Not to be reproduced by photoprint or microfilm without written permission from the publisher

NEW ISOTOPES ^{29,30}Mg, ^{31,32,33}Al, ^{33,34,35,36}Si, ^{35,36,37,38}P, ^{39,40}S AND ^{41,42}Cl PRODUCED IN BOMBARDMENT OF A ²³²Th TARGET WITH 290 MeV ⁴⁰Ar IONS

A. G. ARTUKH, V. V. AVDEICHIKOV[†], G. F. GRIDNEV,
 V. L. MIKHEEV, V. V. VOLKOV and J. WILCZYŃSKI^{††}
 Joint Institute for Nuclear Research, Dubna, USSR

MULTINUCLEON TRANSFER REACTIONS IN THE ²³²Th+²²Ne SYSTEM

A. G. ARTUKH, G. F. GRIDNEV, V. L. MIKHEEV, V. V. VOLKOV and J. WILCZYŃSKI⁺ Joint Institute for Nuclear Research, Dubna, USSR

> Received 18 December 1972 (Revised 14 May 1973)

TRANSFER REACTIONS IN THE INTERACTION OF ⁴⁰Ar WITH ²³²Th

A. G. ARTUKH, G. F. GRIDNEV, V. L. MIKHEEV, V. V. VOLKOV and J. WILCZYNSKI[†] Joint Institute for Nuclear Research, Dubna, USSR

Received 13 April 1973

Multi-nucleon transfer reactions (MNT), experiment progress

	Lab.	Reaction system	References		
	Dubna	¹³⁶ Xe + ²⁰⁸ Pb ^{156,160} Gd + ¹⁸⁶ W	Phys. Rev. C 86, 044611 (2012); Phys. Rev. C 96, 064621 (2017)		
	GSI	²³⁸ U+ ²³⁸ U ⁴⁸ Ca+ ²⁴⁸ Cm ⁴⁸ Ca+ ²³⁸ U	 Phys. Rev. Lett. 39, 385 (1977); Phys. Rev. Lett. 41, 469 (1978); Phys. Lett. B 748, 199 (2015); Eur. Phys. J. A 56, 224 (2020) 		
	GANIL	²³⁸ U+ ²³⁸ U; ¹³⁶ Xe+ ¹⁹⁸ Pt	IJMPE 17, 2235-2239 (2008); Phys. Rev. Lett. 115, 172503 (2015)		
	Argonne ¹³⁶ Xe+ ²⁰⁸ Pb ²⁰⁴ Hg+ ¹⁹⁸ Pt		Phys. Rev. C 91, 064615 (2015); Physics Letters B 771, 119-124 (2017)		
1	RIKEN-KISS	²³⁸ U+ ¹⁹⁸ Pt→ ²⁴¹ U	Phys. Rev. Lett. 130, 132502 (2023)		

Slide from Yuri Oganessian in Lanzhou, 2005

Damped collisions of two actinide nuclei

PRL39(1977)1065, PRL41(1978)469, ZPA292(1979)171,

PRL43(1979)1483, PRC88(2013)054615

New isotope production around N=126

第32卷第2期 2015年6月

原子核物理评论 Nuclear Physics Review

Vol. 32, No. 2 June, 2015 PRL 101, 122701 (2008)

Article ID: 1007-4627(2015)02-0137-09

Production of Exotic Nuclei in Low-Energy Multi-Nucleon Transfer Reactions

V.I. Zagrebaev¹, Walter Greiner²

2. Frankfurt Institute for Advanced Studies, J.W. Goethe-Universität, Frankfurt, Germany)

Production of New Heavy Isotopes in Low-Energy Multinucleon Transfer Reactions

Valery Zagrebaev¹ and Walter Greiner²

¹Flerov Laboratory of Nuclear Reactions, JINR, Dubna, Moscow Region, Russia ²Frankfurt Institute for Advanced Studies, J.W. Goethe-Universität, Frankfurt, Germany (Received 8 July 2008; published 17 September 2008)

It is shown that the multinucleon transfer reactions in low-energy collisions of heavy ions may be used for production of new neutron-rich nuclei at the "northeast" part of the nuclear map along the neutron closed shell N = 126 which plays an important role in the r process of nucleosynthesis. More than 50 unknown nuclei might be produced in such reactions (in particular, in collision of 136 Xe with 208 Pb) with cross sections of not less than 1 μ b.

INSTITUTE OF PHYSICS PUBLISHING	JOURNAL OF PHYSICS G: NUCLEAR AND PARTICLE PHYSICS		
J. Phys. G: Nucl. Part. Phys. 34 (2007) 1-25	doi:10.1088/0954-3899/34/1/001		

Low-energy collisions of heavy nuclei: dynamics of sticking, mass transfer and fusion

Valery Zagrebaev¹ and Walter Greiner²

¹ Flerov Laboratory of Nuclear Reaction, JINR, Dubna, Moscow Region, Russia ² Frankfurt Institute for Advanced Studies, JW Goethe-Universität, Frankfurt, Germany

E-mail: valeri.zagrebaev@jinr.ru

DOI: 10.1103/PhysRevLett.101.122701

(1. Flerov Laboratory of Nuclear Reactions, JINR, Dubna, Moscow Region, Russia;

The International Workshop on Nuclear Dynamics in Heavy-Ion Reactions (IWND2014)

PHYSICAL REVIEW LETTERS

PACS numbers: 25.70.Jj, 25.70.Hi

New isotope ²⁴¹U via MNT reactions and high-precision mass measurement

PHYSICAL REVIEW LETTERS 130, 132502 (2023)

Editors' Suggestion Featured in Physics

Discovery of New Isotope ²⁴¹U and Systematic High-Precision Atomic Mass Measurements of Neutron-Rich Pa-Pu Nuclei Produced via Multinucleon Transfer Reactions

T. Niwase,^{1,*} Y. X. Watanabe,¹ Y. Hirayama,¹ M. Mukai,² P. Schury,¹
A. N. Andreyev,³ T. Hashimoto,⁴ S. Iimura,⁵ H. Ishiyama,² Y. Ito,⁶ S. C. Jeong,¹
D. Kaji,² S. Kimura,² H. Miyatake,¹ K. Morimoto,² J.-Y. Moon,⁴ M. Oyaizu,¹
M. Rosenbusch,¹ A. Taniguchi,⁷ and M. Wada,¹
¹Wako Nuclear Science Center, Institute of Particle and Nuclear Studies,
High Energy Accelerator Research Organization (KEK), Wako, Saitama 351-0198, Japan
²RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan
³School of Physics, Engineering and Technology, University of York, York YO10 5DD, United Kingdom
⁴Institute for Basic Science, 70, Yuseong-daero 1689-gil, Yusung-gu, Daejeon 43000, Korea
⁵Department of Physics, Rikkyo University, Tokyo 171-8501, Japan
⁶Advanced Science Research Center, Japan Atomic Energy Agency, Ibaraki 319-1195, Japan

(Received 21 November 2022; revised 26 January 2023; accepted 16 February 2023; published 31 March 2023)

New isotope production around N= 162 in MNT reactions

Production of heavy isotopes in transfer reactions by collisions of $^{238}\text{U} + ^{238}\text{U}$

Zhao-Qing Feng,^{*} Gen-Ming Jin, and Jun-Qing Li

Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China (Received 3 November 2009; published 7 December 2009)

Eur. Phys. J. A (2022) 58:162	THE EUROPEAN	Check for
https://doi.org/10.1140/epja/s10050-022-00819-2	PHYSICAL JOURNAL A	updates
December Antiple Theoretical Discourse		

Production of neutron-rich heavy nuclei around N = 162in multinucleon transfer reactions

Cheng Peng¹, Zhao-Qing Feng^{1,a}

School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China

Cluster emission (α , ⁸Be, etc) at IMP (Lanzhou) in the reaction of ¹²C+²⁰⁹Bi near barrier energy

第1卷 第1期	高能物理与核物理	Vol. 1, No. 1
1977 年11月	PHYSICA ENERGIAE FORTIS ET PHYSICA NUCLEARIS	November, 1977

沈文庆 徐树威 王大延 谢元祥 郭中言 李祖玉 (中国科学院近代物理研究所)

Nuclear Physics A Volume 349, Issues 1–2, 3–10 November 1980, Pages 285–300

Product cross sections for the reaction of ¹²C with ²⁰⁹Bi *

Gen-Ming Jin^{1, 2}

¹ Institute of Modern Physics, Academia Sinica, Lanzhou, People's Republic of China ² The Niels Bohr Institute, Copenhagen Ø, Denmark

Yuan-Xiang Xie, Yong-Tai Zhu, Wen-Ging Shen, Xi-Jun Sun, Jun-Sheng Guo, Guo-Xing Liu, Ju-Sheng Yu, Chi-Chang Sun

Institute of Modern Physics, Academia Sinica, Lanzhou, People's Republic of China

J.D. Garrett

The Niels Bohr Institute, Copenhagen Ø, Denmark

轰击能量低于73MeV的	杨澄中,	沈文庆, 郭俊	自然科学		回夕贮	1002 11 12
12C+209Bi反应研究	盛,	邬恩九等	奖	二守矢	国分阮	1902-11-12

II. Dinuclear system model

DEEP INELASTIC TRANSFER REACTIONS – THE NEW TYPE OF REACTIONS BETWEEN COMPLEX NUCLEI

V.V. VOLKOV

Joint Institute for Nuclear Research, Dubna, USSR

Received October 1977

Quasifission fragments: G. G. Adamian, N. V. Antonenko, and A. S. Zubov, Phys. Rev. C 71, 034603 (2005)

MNT2024

CSs in the fusion-evaporation and MNT reactions

Peng-Hui Chen et al., Physical Review C 101, 024610 (2020); 102, 014621 (2020)

MNT2024

The distribution probability with pure nucleon transfer

W. Li et al., Europhys. Lett. 64 (2003) 750; Z.-Q. Feng et al., NPA 771 (2006) 50, PRC 76 (2007) 044606, NPA 816 (2009) 33

$$\begin{split} \frac{dP(Z_1, N_1, E_1, t)}{dt} \\ &= \sum_{Z_1'} W_{Z_1, N_1; Z_1', N_1}(t) \Big[d_{Z_1, N_1} P(Z_1', N_1, E_1', t) \\ &- d_{Z_1', N_1} P(Z_1, N_1, E_1, t) \Big] + \sum_{N_1'} W_{Z_1, N_1; Z_1, N_1'}(t) \\ &\times \Big[d_{Z_1, N_1} P(Z_1, N_1', E_1', t) - d_{Z_1, N_1'} P(Z_1, N_1, E_1, t) \Big] \end{split}$$

Transition probability

$$W_{Z_1,N_1;Z'_1,N_1} = \frac{\tau_{\text{mem}}(Z_1,N_1,E_1;Z'_1,N_1,E'_1)}{d_{Z_1,N_1}d_{Z'_1,N_1}\hbar^2} \times \sum_{ii'} |\langle Z'_1,N_1,E'_1,i'|V|Z_1,N_1,E_1,i\rangle|^2$$

12

The distribution probability with cluster transfer (neutron, proton, deuteron, triton, ³He and α)

$$\frac{dP(Z_{1}, N_{1}, E_{1}, \beta_{1}, B, t)}{dt} = \sum_{Z'_{1} = Z_{1} \pm 1} W_{Z_{1}, N_{1}, \beta_{1}; Z'_{1}, N_{1}, \beta'_{1}}(t) [d_{Z_{1}, N_{1}}P(Z'_{1}, N_{1}, E'_{1}, \beta'_{1}, B, t) - d_{Z'_{1}, N_{1}}P(Z_{1}, N_{1}, E_{1}, \beta_{1}, B, t)] \\ + \sum_{N'_{1} = N_{1} \pm 1} W_{Z_{1}, N_{1}, \beta_{1}; Z'_{1}, N'_{1}, \beta'_{1}}(t) [d_{Z_{1}, N_{1}}P(Z_{1}, N'_{1}, E'_{1}, \beta'_{1}, B, t) - d_{Z'_{1}, N'_{1}}P(Z_{1}, N_{1}, E_{1}, \beta_{1}, B, t)] \\ + \sum_{Z'_{1} = \pm 1, N'_{1} = N_{1} \pm 2} W_{Z'_{1}, N_{1}, \beta_{1}; Z'_{1}, N'_{1}, \beta'_{1}}(t) [d_{Z_{1}, N_{1}}P(Z'_{1}, N'_{1}, E'_{1}, \beta'_{1}, B, t) - d_{Z'_{1}, N'_{1}}P(Z_{1}, N_{1}, E_{1}, \beta_{1}, B, t)] \\ + \sum_{Z'_{1} = \pm 1, N'_{1} = N_{1} \pm 2} W_{Z'_{1}, N_{1}, \beta_{1}; Z'_{1}, N'_{1}, \beta'_{1}}(t) [d_{Z_{1}, N_{1}}P(Z'_{1}, N'_{1}, E'_{1}, \beta'_{1}, B, t) - d_{Z'_{1}, N'_{1}}P(Z_{1}, N_{1}, E_{1}, \beta_{1}, B, t)] \\ + \sum_{Z'_{1} = \pm 2, N'_{1} = N_{1} \pm 2} W_{Z'_{1}, N_{1}, \beta_{1}; Z'_{1}, N'_{1}, \beta'_{1}}(t) [d_{Z_{1}, N_{1}}P(Z'_{1}, N'_{1}, E'_{1}, \beta'_{1}, B, t) - d_{Z'_{1}, N'_{1}}P(Z_{1}, N_{1}, E_{1}, \beta_{1}, B, t)] \\ + \sum_{Z'_{1} = \pm 2, N'_{1} = N_{1} \pm 2} W_{Z'_{1}, N_{1}, \beta_{1}; Z'_{1}, N'_{1}, \beta'_{1}}(t) [d_{Z_{1}, N_{1}}P(Z'_{1}, N'_{1}, E'_{1}, \beta'_{1}, B, t) - d_{Z'_{1}, N'_{1}}P(Z_{1}, N_{1}, E_{1}, \beta_{1}, B, t)] \\ + \sum_{Z'_{1} = \pm 2, N'_{1} = N_{1} \pm 2} W_{Z'_{1}, N_{1}, \beta_{1}; Z'_{1}, N'_{1}, \beta'_{1}}(t) [d_{Z_{1}, N_{1}}P(Z'_{1}, N'_{1}, E'_{1}, \beta'_{1}, B, t) - d_{Z'_{1}, N'_{1}}P(Z_{1}, N_{1}, E_{1}, \beta_{1}, B, t)] \\ + \sum_{Z'_{1} = \pm 2, N'_{1} = N_{1} \pm 2} W_{Z'_{1}, N_{1}, \beta_{1}; Z'_{1}, N'_{1}, \beta'_{1}}(t) [d_{Z_{1}, N_{1}}P(Z'_{1}, N'_{1}, E'_{1}, \beta'_{1}, B, t) - d_{Z'_{1}, N'_{1}}P(Z_{1}, N_{1}, E_{1}, \beta_{1}, B, t)].$$

$$12$$

Potential energy surface

$U(\{\alpha\}) = B(Z_1, N_1) + B(Z_2, N_2) - \left[B(Z, N) + V_{\text{rot}}^{\text{CN}}(J)\right] + V(\{\alpha\})$

With $\{\alpha\}$ being $Z_1, N_1, Z_2, N_2; J, R; \beta_1, \beta_2, \theta_1, \theta_2$

$$V(A_{1}, A_{2}, J, \mathbf{R}; \beta_{1}, \beta_{2}, \theta_{1}, \theta_{2})$$

= $V_{N}(A_{1}, A_{2}, \mathbf{R}; \beta_{1}, \beta_{2}, \theta_{1}, \theta_{2})$
+ $V_{C}(A_{1}, A_{2}, \mathbf{R}; \beta_{1}, \beta_{2}, \theta_{1}, \theta_{2}) + \frac{J(J+1)\hbar^{2}}{2\,\mu\mathbf{R}^{2}},$

$$V_N = C_0 \left\{ \frac{F_{\rm in} - F_{\rm ex}}{\rho_0} \left[\int \rho_1^2(\mathbf{r}) \rho_2(\mathbf{r} - \mathbf{R}) d\mathbf{r} + \int \rho_1(\mathbf{r}) \rho_2^2(\mathbf{r} - \mathbf{R}) d\mathbf{r} \right] + F_{\rm ex} \int \rho_1(\mathbf{r}) \rho_2(\mathbf{r} - \mathbf{R}) d\mathbf{r} \right\},$$

with

and

$$F_{\text{in,ex}} = f_{\text{in,ex}} + f'_{\text{in,ex}} \frac{N_1 - Z_1}{A_1} \frac{N_2 - Z_2}{A_2},$$

$$\rho_1(\mathbf{r}) = \frac{\rho_0}{1 + \exp[(\mathbf{r} - \Re_1(\theta_1))/a_1]}$$

 $\rho_2(\mathbf{r} - \mathbf{R}) = \frac{\rho_0}{1 + \exp[(|\mathbf{r} - \mathbf{R}| - \Re_2(\theta_2))/a_2]}$

Nucleus-nucleus potential from the Skyrme energy-density functional

Bartel J and Bencheikh K2002 Eur. Phys. J. A14179 Denisov VY and Nörenberg W2002 Eur. Phys. J. A15 375

$$V_{\text{nucl}}(R, \{\alpha\}_{P}, \{\alpha\}_{T}) = E_{\text{sys}}(R, \{\alpha\}_{P}, \{\alpha\}_{T}) - E_{P}(\{\alpha\}_{P}) - E_{T}(\{\alpha\}_{T}).$$

$$E_{\text{sys}}(\boldsymbol{R}, \{\alpha\}_{\text{P}}, \{\alpha\}_{\text{T}}) = \int \varepsilon [\rho_{1p}(\boldsymbol{r}) + \rho_{2p}(\boldsymbol{R} - \boldsymbol{r}), \\ \rho_{1n}(\boldsymbol{r}) + \rho_{2n}(\boldsymbol{R} - \boldsymbol{r})] d\boldsymbol{r}, \\ E_{\text{P}}(\{\alpha\}_{\text{P}}) = \int \varepsilon [\rho_{1p}(\boldsymbol{r}), \rho_{1n}(\boldsymbol{r})] d\boldsymbol{r}$$

and

$$E_{\mathrm{T}}(\{\alpha\}_{\mathrm{T}}) = \int \varepsilon [\rho_{2p}(\boldsymbol{R} - \boldsymbol{r}), \rho_{2n}(\boldsymbol{R} - \boldsymbol{r})] \mathrm{d}\boldsymbol{r},$$

© 2022 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing Printed in China and the UK Communications in Theoretical Physics Commun. Theor. Phys. 74 (2022) 055302 (9pp) https://doi.org/10.1088/1572-9494/ac6491

Cheng Peng and Zhao-Qing Feng

School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China E-mail: fengzhq@scut.edu.cn

$$\begin{split} \hat{V}_{\text{eff}}(\mathbf{r}_{1}, \, \mathbf{r}_{2}) &= t_{0}(1 \, + \, x_{0}\hat{P}_{\sigma})\,\delta(\mathbf{r}_{1} - \mathbf{r}_{2}) \\ &+ \frac{t_{3}}{6}(1 \, + \, x_{3}\hat{P}_{\sigma})\,\delta\left(\frac{1}{2}(\mathbf{r}_{1} \, + \, \mathbf{r}_{2}\right)\right)\delta(\mathbf{r}_{1} - \mathbf{r}_{2}) \\ &- \frac{t_{1}}{2}(1 \, + \, x_{1}\hat{P}_{\sigma})((\nabla_{1} - \, \nabla_{2})^{2}\delta(\mathbf{r}_{1} - \mathbf{r}_{2}) \, + \, h.c.) \\ &- t_{2}(1 \, + \, x_{2}\hat{P}_{\sigma})((\nabla_{1} - \, \nabla_{2})\delta(\mathbf{r}_{1} - \mathbf{r}_{2})(\nabla_{1} - \, \nabla_{2})) \\ &+ \mathrm{i}W_{0}(\hat{\sigma}_{1} + \, \hat{\sigma}_{2}) \cdot \hat{\mathbf{k}}' \, \times \, \delta(\mathbf{r}_{1} - \mathbf{r}_{2})\hat{\mathbf{k}} \end{split}$$

$$\begin{split} \nu_{sk}(\mathbf{r}) &= \frac{t_0}{2} \bigg[\bigg(1 + \frac{1}{2} x_0 \bigg) \rho^2 - \bigg(x_0 + \frac{1}{2} \bigg) (\rho_p^2 + \rho_n^2) \bigg] \\ &+ \frac{1}{12} t_3 \rho^\alpha \bigg[\bigg(1 + \frac{1}{2} x_3 \bigg) \rho^2 - \bigg(x_3 + \frac{1}{2} \bigg) (\rho_p^2 + \rho_n^2) \bigg] \\ &+ \frac{1}{4} \bigg[t_1 \bigg(1 + \frac{1}{2} x_1 \bigg) + t_2 \bigg(1 + \frac{1}{2} x_2 \bigg) \bigg] \tau \rho \\ &+ \frac{1}{4} \bigg[t_2 \bigg(x_2 + \frac{1}{2} \bigg) - t_1 \bigg(x_1 + \frac{1}{2} \bigg) \bigg] (\tau_p \rho_p + \tau_n \rho_n) \\ &+ \frac{1}{16} \bigg[3 t_1 \bigg(1 + \frac{1}{2} x_1 \bigg) - t_2 \bigg(1 + \frac{1}{2} x_2 \bigg) \bigg] (\nabla \rho)^2 \\ &- \frac{1}{16} \bigg[3 t_1 \bigg(x_1 + \frac{1}{2} \bigg) + t_2 \bigg(x_2 + \frac{1}{2} \bigg) \bigg] ((\nabla \rho_n)^2 + (\nabla \rho_p)^2) \\ &- \frac{m W_0^2}{2 \hbar^2} \bigg[\frac{\rho_p}{f_p} (2 \nabla \rho_p + \nabla \rho_n)^2 + \frac{\rho_n}{f_n} (2 \nabla \rho_n + \nabla \rho_p)^2 \bigg] \end{split}$$

MNT2024

74

			•			
Parameter	SkP	SkM	SkM*	SLy4	Ska	SIII
t_0 (MeV fm ³)	-2931.7	-2645	-2645	-2488.91	-1602.78	-1128.75
t_1 (MeV fm ⁵)	320.6	385	410	486.82	570.88	395.0
t_2 (MeV fm ⁵)	-337.4	-120	-135	-546.39	-67.70	-95
t_3 (MeV fm ^{3+3α})	18709	15 595	15 595	13 777	8000	14 000
<i>x</i> ₀	0.292	0.09	0.09	0.834	-0.02	0.45
x_1	0.653	0	0	-0.344	0	0
<i>x</i> ₂	-0.537	0	0	-1.0	0	0
<i>x</i> ₃	0.181	0	0	1.354	-0.286	1
W_0 (MeV fm ⁵)	100	130	130	123	125	120
α	1/6	1/6	1/6	1/6	1/3	1
K_{∞} (MeV)	199	217	217	230	261	352

Table 1. Parameters of the Skyrme forces used in the calculation.

Survival probability and fusion-evaporation CSs

Data from RIKEN (K. Nishio, H. Ikezoe, S. Mitsuoka et al, Phys. Rev. C 62, 014602 (2000))

220 Pa+216Ac

(d)

(h)

40

٢

40

50

 $2n1\alpha$

 $4n1\alpha$

50

Θ

II

²²²Pa

²²¹Th

60

^{3n1α} ⊕ ♀ ⊕

70

^{210,209}Ra

5n1α

70

60

80

- 3n2p

²²¹U+²¹⁷Th

P. H. Chen, Z. Q. Feng* et al., Chinese Physics C 40, 091002 (2016) (highlight CPC in 2016)

Peng-Hui Chen, Zhao-Qing Feng*, et al., Eur. Phys. J. A 53, 95 (2017)

10⁻¹

(a)

²²³U+²¹⁹Th+²¹

III. Results and discussion

1. Fusion-evaporation reactions for synthesizing **119** and **120**

Fei Niu, Peng-Hui Chen, Zhao-Qing Feng, Nuclear Science and Techniques 32 (2021) 103

第 37 卷 第 3 期	原子核物理评论	Vol. 37, No. 3
2022年10月	Nuclear Physics Review	Oct. , 2022

Article ID: 1007-4627(2022)03-0001-15

Production cross-sections of new superheavy elements with Z = 119-120 in fusion-evaporation reactions

Zi-Han WANG¹, Peng-Hui CHEN^{1, 2}, Xiang-Hua ZENG^{1, 3}, Zhao-Qing FENG⁴

College of Physical Science and Technology, Yangzhou University, Yangzhou 225009, China;
 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
 College of Electrical, Power and Energy Engineering, Yangzhou University Yangzhou 225009, China;
 School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510641, China)

Table 2 The same as in Table 1; for the production of SHE Z = 120

Reaction systems	$\sigma_{\rm ER}$ (pb)	$E_{\mathbf{CN}}^*$ (MeV)	References
249Cf(50Ti,4n)295120	0.006	43	[61]
251Cf(50Ti,4n)297120	0.003	42	
²⁴⁸ Cm(⁵⁴ Cr,4n) ²⁹⁸ 120	0.001	35	
244Pu(58Fe,3n)299120	0.01	36	[63]
238U(64Ni,3n)299120	0.007	36	
²⁴⁸ Cm(⁵⁴ Cr,3n) ²⁹⁹ 120	0.076	36	
249Cf(50Ti,3n)296120	0.76	33	
249Cf(50Ti,3n)296120	0.1	29	[64]
²⁴⁸ Cm(⁵⁴ Cr,3n) ²⁹⁹ 120	0.055	30	
²⁴⁹ Cf(⁵⁰ Ti,4n) ²⁹⁵ 120	0.046	43	[59]
²⁴⁸ Cm(⁵⁴ Cr,4n) ²⁹⁸ 120	0.028	43	
²⁴⁹ Cf(⁵⁰ Ti,3n) ²⁹⁶ 120	0.06	36	[29]
²⁴⁸ Cf(⁴⁶ Ti,2n) ²⁹² 120	0.17	34	
249Cf(46Ti,3n)292120	0.24	39	
250Cf(46Ti,2n)294120	0.13	36	
251Cf(46Ti,3n)294120	0.37	39	
251Cf(50Ti,3n)298120	0.11	33	This work
251Cf(48Ti,2n)297120	0.25	25	
²⁴⁴ Pu(⁵⁸ Fe,3n) ²⁹⁹ 120	0.004	³³ 0(54C	r_{12}^{248} (m) = 207 77 MoV
²⁴⁴ Pu(⁶² Fe,3n) ³⁰³ 120	0.0004	31 6(-1)	1 + 207.77 MeV
²⁴⁸ Cm(⁵⁴ Cr,3n) ²⁹⁹ 120	0.004	33	_
248Cm(52Cr,2n)300120	0.37	²⁵ Co	=4 fb.E*പ=33 MeV.
238U(64Ni,3n)299120	0.001	31 31	<u> </u>
238U(62Ni,2n)300120	0.001	27	2/0 77 MoV
²⁵² Es(⁴⁴ Sc,3n) ²⁹³ 120	3.18	35 c.m	240.77 Mev,
²⁵² Es(⁴⁵ Sc,3n) ²⁹³ 120	0.59	35	
249Bk(49V,2n)296120	0.18	27 E _{lab} =	0.43 MeV/nucleon
249Bk(51V,2n)298120	0.1	27	

excitation energy (MeV)

2. Yields, total kinetic energy spectra and angular distribution in MNT reactions

PHYSICAL REVIEW C 95, 024615 (2017)

Production of neutron-rich isotopes around N = 126 in multinucleon transfer reactions

3. Cluster transfer and cluster emission in massive transfer reactions

Cluster transfer effect on the MNT fragment production

Effect of cluster transfer on the production of neutron-rich nuclides near N = 126in multinucleon-transfer reactions

Zhao-Qing Feng 0

School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China

(Received 8 July 2023; revised 19 September 2023; accepted 17 October 2023; published 13 November 2023)

Phys. Rev. C 108, L051601 (2023), arXiv:2308.03127

大质量转移反应中前平衡结团发射研究-

PHYSICAL REVIEW C 107, 054613 (2023)

IV. Summary and perspective

- > The maximal cross sections with <u>10 fb</u> for the reaction of ${}^{54}Cr({}^{243}Am,3n){}^{294}119$ corresponding to $E_{c.m.}=239.43$ MeV and <u>4 fb</u> for ${}^{54}Cr({}^{248}Cm,3n){}^{299}120$ at 33 MeV, $E_{c.m.}=240.77$ MeV, $E_{lab}=5.43$ MeV/nucleon.
- Shell effect plays an important role on the MNT fragments formation. New neutron-rich isotopes around N=162 is the stepstone to reach the 'island of stability'. The cluster transfer in the MNT reactions broadens the isotopic distribution and slightly enhances the fusion probability.
- > Preequilibrium clusters enable the similar reaction dynamics with the MNT reactions

Perspective: Influence of cluster structure of projectile nuclides, such as ¹²C, ¹⁶O, on the cluster emission, spectroscopic factor.

Thank you for your attention!