mini-WS: Toward a new era of kaonic nuclei and atoms at DAFNE and J-PARC @ RIKEN, Japan

# Forthcoming programs on kaonic nuclei/atoms at J-PARC

Tadashi Hashimoto (JAEA ASRC)

December 14th, 2023

|         |      | 4         | 5      | 6          | 7       | 8        | 9     | 10     | 11  | 12                                         | 1      | 2     | 3      | ver. 2023/11/01 |
|---------|------|-----------|--------|------------|---------|----------|-------|--------|-----|--------------------------------------------|--------|-------|--------|-----------------|
| JFY2022 |      | COMET/S2S |        |            |         | phase-α  |       |        | e-α |                                            |        |       |        |                 |
|         | K1.8 |           |        |            |         |          |       |        |     |                                            |        |       |        |                 |
|         | BR   |           |        |            |         |          |       |        |     |                                            |        |       |        |                 |
|         |      |           | supe   | rconc      | ducting | g wire,  | retur | n york |     |                                            |        |       | yoke   | to KEK          |
| JFY2023 |      |           |        |            |         |          |       |        |     |                                            |        |       |        |                 |
|         | K1.8 |           |        | E70        | C       |          |       |        |     |                                            |        | E700  | )      |                 |
|         | BR   |           |        | <b>T98</b> |         |          |       |        |     |                                            |        | E73   |        |                 |
|         |      |           | soler  | noid a     | Ind CE  | )C       |       |        |     |                                            |        |       |        |                 |
| JFY2024 |      |           |        |            |         |          |       |        |     |                                            |        |       |        |                 |
|         | K1.8 |           |        | E70        |         |          |       |        |     |                                            | E70    | E75   |        |                 |
|         | BR   |           |        | E73        | CDS     | ->Hyp    | TPC   |        |     |                                            |        |       |        |                 |
|         |      | soler     | nold a | nd CI      | CDC     | to J-    | PARC  |        |     |                                            |        |       | sole   | noid to J-PARC  |
| JFY2025 |      | COM       | 1ET-I  |            |         |          |       |        |     |                                            |        |       |        |                 |
|         | K1.8 |           |        |            |         |          |       |        |     |                                            |        |       |        |                 |
|         | BR   | E72       | E72    | area       | rearra  | angen    | nent  |        |     | sole                                       | noid/y | oke t | to K1. | .8BR            |
|         |      |           |        |            |         |          |       |        |     | solenoid assembly, test, field measurement |        |       |        |                 |
| JFY2026 |      |           |        |            |         |          |       |        |     |                                            |        |       |        |                 |
|         | K1.8 |           |        |            |         |          |       |        |     |                                            |        |       |        |                 |
|         | BR   | soler     | noid a | ssem       | bly, te | st, fiel | read  | E80C   | ,   | E80 E80                                    |        |       |        |                 |
| JFY2027 |      |           |        |            |         |          |       |        |     |                                            |        |       |        |                 |
|         | K1.8 |           |        |            |         |          |       |        |     |                                            |        |       |        |                 |
|         | BR   |           |        |            |         |          |       |        |     |                                            |        |       |        |                 |

### + Kaonic deuterium (E57), and …

# Hypertriton lifetime (J-PARC E73)

# Method



 $t_{\text{decay}} = (t_{\text{CDH}} - t_{\text{T0}}) - t_{\text{CDC}}^{\text{calc.}} - t_{\text{beam}}^{\text{calc.}}$ 

### $^{4}_{\Lambda}$ H lifetime as a feasibility test (J-PARC T77) Phys. Lett. B 845, 138128 (2023). 2-body decay ${}^{4}_{\wedge}\mathbf{H}$ <sup>4</sup>He "almost" at rest **CDS** 400 120 Data 50 kW ~3 days = $206 \pm 8(\text{stat.}) \pm 12(\text{sys.}) \text{ ps}$ $\cdots$ quasi-free $\Lambda$ 350 @June, 2020 100 ••••• quasi-free $\Sigma^0$ 300 Counts / 50 ps ---- quasi-free $\Sigma^{-}$ 80 ······ Background Sum 250 60 200 150 40 100 20 50 0 -0.5 -0.2-0.15-0.1 -0.05 0.5 1.5 -0.25 0 1 Charge $\times$ Momentum (GeV/c) Timing (ns)

Successfully demonstrated the new method!

Counts / 2 MeV

# Helium-3 test data



We succeeded in observing the 2-body decay peak
80kW x 25 days beam-time to acquire >1000 events will be scheduled sometime from April to June, 2024.

# Improvement in setup





- Forward Calorimeter is enlarged with additional PbG crystals
- Newly install VFT (vertex fiber tracker)
- The target system modified accordingly

# Improvement in resolution with VFT



- Z-vertex resolution ~7mm  $\rightarrow$  ~1mm
- x2 better momentum & mass resolution

# $\Lambda/\Sigma^0$ separation might be possible



MC with VFT



- Resotluion would be improved ~40 MeV  $\rightarrow$  ~ 25 MeV

. We expect different structure in  $m_{\Sigma^0 d}$  (I=1) because  $\bar{K}NN \rightarrow \Lambda d$  (I=0)

# Larger acceptance using "short tracks"

only require to reach the CDC 8th layer

E15-CDC+CDH

E15-CDC+CDH+VFT



# VFT status: many damaged fibers.



# Target status





- H2/D2/3He/4He with the same system using a pulse tube cryocooler
- Target cell with less material.

# Further experiment on *K̄NNN* (J-PARC E80)

# J-PARC E80 with a new spectrometer



- x3 longer CDC: solid angle 59%→93%
- · 3-layer barrel NC: neutron efficiency 3%→15%

# Acceptance for $K^- + {}^4 \text{He} \rightarrow \Lambda d + n$



large kinematical-region coverage & x2 acceptance

### Expected spectrum @ 90 kW x 3 weeks



• We expect x40 Adn events

## Acceptance for $K^- + {}^4 \text{He} \rightarrow \Lambda pn + n$



- x10 acceptance compared with E15 setup
- Still, one order of magnitude smaller compared with  $\Lambda dn$

# Expected spectra

@ 3 weeks, 90kW



Clear peak would be observed for both modes
 Peak positions etc. should be carefully compared

# Spacial information $\bar{K}NNN \rightarrow \Lambda pn$ decay

P. Kienle et al., Physics Letters B 632 (2006) 187–191



• If  $\bar{K}NN \rightarrow \Lambda pn$  is 2NA process, spectator momentum would reflect the system size.

However, we cannot detect low-momentum protons…

# Forward nucleon detection





- Exclusive analysis by detecting all the decay product becomes more and more difficult with increasing mass number.
- Instead, detect forward knock-out nucleons with hyperon tag

# Predictions

| $\int$ | Y. Kanada-En'vo              |               |           |        |      |
|--------|------------------------------|---------------|-----------|--------|------|
|        | EDIA E7 10E (20)             | present       |           |        |      |
|        | EPJA 37, 163 (20)            |               | set-I     | set-II |      |
|        | $ u_N ~({\rm fm}^{-2})$      |               |           | 0.16   | 0.25 |
|        | kaonic nuclei $(J^{\pi}, T)$ |               |           |        |      |
|        | $\bar{K}NNNN(0^-, 1/2)$      | B.E.          | (MeV)     | 60.8   | 93.2 |
|        |                              | $R_N$         | $_N$ (fm) | 1.77   | 1.41 |
|        |                              | $R_{\bar{K}}$ | $_N$ (fm) | 2.17   | 1.73 |

|                                      | Properties of the | $\frac{4}{\bar{K}}$ He system with | $I J^{\pi} = 0^{-}.$ |  |  |  |
|--------------------------------------|-------------------|------------------------------------|----------------------|--|--|--|
| $_{\bar{K}}^{4}$ He(0 <sup>-</sup> ) | Ку                | Kyoto                              |                      |  |  |  |
|                                      | Type I            | Type II                            |                      |  |  |  |
| B (MeV)                              | 67.9              | 72.7                               | 85.2                 |  |  |  |
| Γ (MeV)                              | 28.3              | 74.1                               | 86.5                 |  |  |  |
| TABLE VI.                            | Properties of the | ${}^{4}_{\bar{K}}$ H system with   | $J^{\pi} = 0^{-}.$   |  |  |  |
| $^{4}_{\bar{\nu}}H(0^{-})$           | Кус               | AY                                 |                      |  |  |  |
| K × ´                                | Type I            | Type II                            |                      |  |  |  |
| B (MeV)                              | 69.6              | 75.5                               | 87.4                 |  |  |  |
| Γ (MeV)                              | 28.0              | 74.5                               | 87.2                 |  |  |  |

S. Ohnishi et al. PRC 95, 065202 (2017).

TABLE VIII. Properties of the  ${}^{6}_{\bar{K}}$ Li system with  $J^{\pi} = 0^{-}$ .

| $\frac{6}{\bar{v}}$ Li(0 <sup>-</sup> )                                        | Ky               | AY                 |      |  |  |  |  |
|--------------------------------------------------------------------------------|------------------|--------------------|------|--|--|--|--|
| K                                                                              | Type I           | Type II            |      |  |  |  |  |
| B (MeV)                                                                        | 69.8             | 79.7               | 103  |  |  |  |  |
| Γ (MeV)                                                                        | 23.7             | 75.6               | 88.0 |  |  |  |  |
| TABLE IX. P                                                                    | roperties of the | $J^{\pi} = 0^{-}.$ |      |  |  |  |  |
| $^{6}$ He(0 <sup>-</sup> )                                                     | Ky               | AY                 |      |  |  |  |  |
| $\bar{K}^{\Pi C(O)}$                                                           | Type I           | Type II            |      |  |  |  |  |
| B (MeV)                                                                        | 70.6             | 80.0               | 103  |  |  |  |  |
| Γ (MeV)                                                                        | 23.9             | 75.5               | 88.0 |  |  |  |  |
| TADIEV Properties of the ${}^{6}_{\bar{K}}$ Li system with $J^{\pi} = 1^{-}$ . |                  |                    |      |  |  |  |  |
| ${}^{6}_{\bar{K}}\text{Li}(1^{-})^{=}$                                         | Ky               | AY                 |      |  |  |  |  |
| <b>A</b>                                                                       | Type I           | Type II            |      |  |  |  |  |
| B (MeV)                                                                        | 70.8             | 77.5               | 92.9 |  |  |  |  |
| Γ (MeV)                                                                        | 26.4             | 75.2               | 88.0 |  |  |  |  |
| TABLE XI. Properties of the ${}^6_{\bar{K}}$ He system with $J^{\pi} = 1^-$ .  |                  |                    |      |  |  |  |  |
| $^{6}_{-}$ He(1 <sup>-</sup> )                                                 | Ку               | AY                 |      |  |  |  |  |
| <i>K</i>                                                                       | Type I           | Type II            |      |  |  |  |  |
| B (MeV)                                                                        | 72.8             | 80.7               | 95.6 |  |  |  |  |
| Γ (MeV)                                                                        | 26.0             | 75.6               | 88.5 |  |  |  |  |

#### (K<sup>-</sup>, N) at forward angle E15 semi-inclusive E15 exclusive ( $\Lambda pn$ ) PTEP 2015, 061D01 (2015). Phys.Rev.C102,044002(2020) 160 $q_{_X} \le 0.3 \text{ GeV/c}$ $0.3 < q_{\chi} \le 0.6 \text{ GeV/c}$ Y-decav BG Semi-inclusive (a) (b)subtracted $(nb/(MeV/c^2))$ <sup>3</sup>He(K<sup>-</sup>, n)X 🕂 data 120 100 NeV/C 80 6( θ<sub>n</sub>=0 fit total a/dΩ/dM ×. M(Kpp) $- \overline{K}NN \rightarrow \Lambda p$ $\overline{K}N \rightarrow \overline{K}N$ $\cdots \overline{K}NN \rightarrow \Sigma^0 p$ backscattering – quasi-free (on-shell) $X_{40}^{X_{40}}$ broad 40 20 / 2.4 2.6 *M<sub>X</sub>* [GeV/*c*<sup>2</sup>] 2.0 2.8 2.2 3.0 bound state??

- In semi-inclusive spectrum at forward angle, we clearly see the quasi-free peak but cannot isolate the bound state.
- . The situation does not change in  $\Lambda pn$  exclusive analysis

# Possible setup



- large-q region would be better to isolate the bound state.
- Wide angular acceptance to study q-dependence.

# Expected resolution

|         | Ltof (m) | time resolution (ps) | mass resolution (MeV) |
|---------|----------|----------------------|-----------------------|
| E15 NC  | 14       | 150                  | 10                    |
| Сар     | 2        | 80                   | 40                    |
| Forward | 7        | 150                  | 20                    |



- Moderate resolution ~50 MeV can be improved to <20 MeV with a kinematic fit.</li>
- Reasonable resolution to identify missing nucleon ~50 MeV

(K-, N) vs. (K-, d)



- momentum transfer is large in (K<sup>-</sup>,d)
- no clear signal of quasi-elastic process  ${}^{3}\text{He}(K^{-}, d)$

# Other merits with the forward counter

- We can reconstruct full reaction kinematics without detecting one of the decay particle
  - neutral paritcle
  - low-momentum proton. (cf. spectator in decay)

$$K^{-} + {}^{3} \operatorname{He} \to \overline{K}NN + n \to \pi \Sigma p_{s} + n \qquad \qquad K^{-} + {}^{4} \operatorname{He} \to \overline{K}NNN + n \to \begin{cases} \Lambda p n_{s} + n \\ \Lambda n p_{s} + n \end{cases}$$

Useful to analyze decay kinematics and to understand background processes

## Prototype test with electron beam at ELPH



### neutron interaction point should not effect significantly





MPPC: S13361-6050NE-04 4 hybrid x 4 parallel readout AMP: HP MSA-0385x2 (Cascadable Silicon Bipolar MMIC Amplifier)

60 ps resolution is achieved with one side readout

Room to optimize a bit more (MPPC amp is saturated now)

# Kaonic deuterium

# E57 test run in 2019



# Updated strategy: X-ray coincidence



✓ Drastic background reduction by detecting K and L X-rays in coincidence
 ✓ Install SDDs into the target gas to avoid attenuation at the target container
 ✓ KHe 1s & Σ-He can be measured in a similar way

# With shorter beamline & Dorami



- ✓ x1.6 kaons with the shortened beamline by ~2.5 m
- ✓ Longer horizontal vacuum chamber + ~1.3m
   →no problem. we have enough cooling power
- ✓ Larger acceptance for secondary particles.
- ✓ ~4 week x 80 kW to get ~ 700/200 Ka X-rays wo/w L X-ray coincidence assumption: 0.1% X-ray yield, 80% active SDD channels

# by-product with CdZnTe?



- Alessandro is proposing to put CdZnTe detectors surrounding degrader
- Kaonic C, S, Al, …

anti-proton

# anti-proton beam experiment



- double K- production
- . recent study on the possibility of  $\phi n$  bound state  $\cdots$

# Kinematics of $\phi\phi$ events



- . Almost impossible to detect  $\phi$ 
  - · Additional detectors on the beamline downstream of the target might help
- . Exclusive decay measurement is still possible ( $\phi n \rightarrow \Lambda K^0$ )
- Does "dorami" have any advantage over the hyperon spectrometer?
- Streaming DAQ would be useful for a flexible data-taking

# Summary

~2024 · J-PARC E73 (hypertriton lifetime)

•  $\bar{K}NN$  with x2 larger K-s, x2 acceptance, x2 resolution

~2027? . J-PARC E80 (*K̄NNN*)

• x40 times  $\Lambda dn$  events (~20k events)

- . *Λpn* decay (~1000 events?)
- Forward nucleon detection
- Feasibility test of the proton polarimeter

Kaonic deuterium? anti-proton experiment?

**~2030?** . J-PARC P89 (spin-parity of  $\overline{KNN}$ )

Heavier kaonic nuclei L(1405) K-/K+/Σ scattering