

DEVELOPMENT STATUS OF SOLENOIDAL SPECTROMETER

Takuya Nanamura (JAEA) for the J-PARC E80 and P89 collaboration

Contents

- Upgrade plan of J-PARC K1.8 BR beamline and spectrometer system for systematic study of kaonic nuclei
- Proposed physics programs with upgraded experimental setup
 - Search for KbarNNN via 4 He(1 GeV/c K⁻,n) reaction
 - J-PARC E80 experiment
 - Investigation of the spin and parity of the KbarNN state
 - J-PARC P89 experiment
- Design and development status of detectors composing the new spectrometer system(CDS)
- Detectors composing the K1.8 BR beamline

Successful experiment: J-PARC E15(-2nd)

"K-pp" search experiment

- Using the in-flight $K^{-}+^{3}He$ reaction
 - Give a clear information on reaction process
- Exclusive analysis of the Λpn final state
 - Not only the Λp invariant-mass (m_x)
 but also momentum transfer
 - to the Λp system (q_{χ}) were reconstructed
 - "Bound state" is efficiently distinguished from Quasi-free K⁻ absorption

Aims of upgrading beamline & spectrometer

- Expanding the successful experimental method in J-PARC E15
 - Keys: the (K⁻,n) reaction and exclusive analysis
- to various systems in order to establish kaonic nuclei
 - Precise measurement of $\Lambda(1405)$
 - Investigation of the spin and parity of the KbarNN state (J-PARC P89)
 - Systematic study for heavier kaonic nuclei, such as KbarNNN, Kbar NNNN, . . . (J-PARC E80)
- Increasing the K⁻ beam intensity for sufficient statistics
 - By shortening the beamline (\sim 2.5 m)
- Enlarging an acceptance of spectrometer
 - By constructing a large solid-angle spectrometer
 - Exclusive analysis requires detections of decay particles as many as possible to specify the reaction
 - Neutron detection efficiency is important to reconstruct various decay channels

Upgrade plan of J-PARC K1.8 BR beamline and spectrometer system

J-PARC Japan Proton Accelerator Research Complex 1000 m Hadron Main Ring 3-GeV Experimental Synchrotron chrotron Facility Planned construction site for Accelerator-**Driven Transmutation** Experimental Facility Here! Materials and Life Science **Neutrino Experimental Experimental Facility** Facilities

- 31.3 m beamline with 1-stage electrostatic separator
 - Maximum momentum:1.2 GeV/c, π^{\pm} , K^{\pm} , p, pbar beams are available
- Typical K⁻ beam (accelerator power 51kW)
 - 1.0 GeV/c, 210 k /(spill=5.2 s), K⁻/pi⁻=0.5,

Upgrade plan of K1.8 BR beamline

- **28.8 m** beamline with 1-stage electrostatic separator
- expected K⁻ beam (accelerator power 90kW)
 - 1.0 GeV/c, 420 k/(spill=4.2 s), K⁻/pi⁻=~0.7 (1.2M particle /spill)
 - On target: 270k/spill
 - Spill cycle will be shortened due to upgrade of Accelerator

Present Spectrometer system @J-PARC

- solenoid spectrometer
 - Normal-conducting solenoid magnet (0.7T over tracking volume)
 - CDC (Cylindrical Drift Chamber)
 - CDH (Cylindrical Detector Hodoscope)
 - 3cm-thickness, neutron detection efficiency \sim 3%

Momentum resolution 5.3 % for p_T Vertex resolution: $\sigma_r \sim 2$ -3 mm, $\sigma_z \sim 1$ cm β resolution 0.5 %

Upgrade plan of Spectrometer system @J-PARC

- solenoid spectrometer with larger acceptance
 - Superconducting solenoid magnet (0.7T over tracking volume)
 - CDC (Cylindrical Drift Chamber)

- CNC (Cylindrical Neutron Counter)
 - 5×3 cm thickness plastic scintillator array
- VFT (Vertex Fiber Tracker)→new detector

Momentum resolution 2-3 % for p_T Vertex resolution:
 $\sigma_r \sim 2-3 \text{ mm}, \sigma_z \sim 1 \text{mm}$
 β resolution 0.5 %Performances will retain
or will be improved!93% of 4π, detectors will be ~ 3 times longer

4050

Proposed physics programs with upgraded experimental setup

Search for KbarNNN via ⁴He(1 GeV/c K⁻,n) reaction

- J-PARC E80 experiment
- The K⁻ppn state will be easily observed Via 2-body Ad decay Even minimum setup with 1 layer-CNC
- ->1st step experiment of new CDS
 - Limited statistics data with Existing CDC
 - J-PARC T77, 6G K⁻
 - Similar 2D plot to "K-pp" case

We also have a chance to reconstruct
 K⁻ppn state via 3-body Apn decay

Search for KbarNNN via ⁴He(1 GeV/c K⁻,n) reaction

- Detector acceptance for the Ad detection
 - A few times larger than existing CDS!

Search for KbarNNN via ⁴He(1 GeV/c K⁻,n) reaction

- Yield estimation for Ad detection

 $N = \sigma \times N_{beam} \times N_{target} \times \epsilon,$

 $\epsilon = \epsilon_{DAQ} \times \epsilon_{trigger} \times \epsilon_{beam} \times \epsilon_{fiducial} \times \Omega_{CDS} \times \epsilon_{CDS},$

- $N_{beam} = 100 \text{ G K}^{-} \text{ on target}$
 - Corresponding to \sim 3 weeks data taking
- $\sigma(K^-ppn) \cdot Br(\Lambda d) \sim 5 \, \mu b$
 - Assumption From the T77 result (Hashimoto-san)
- <u>N(K-ppn \rightarrow Ad) ~ 12 k events</u>
 - 1.7 k "K⁻pp" → Λ p events in E15 (40 G K⁻)

	Λd
σ(K⁻ppn)*Br	5 μb
N(K ⁻ on target)	100 G
N(target)	2.56 x 10 ²³
ε(DAQ)	0.92
ε(trigger)	0.98
ε(beam)	0.72
Ω(CDC)	0.23
ε(CDC)	0.6
N(K ⁻ ppn)	12 k

- Investigation of the spin and parity of the KbarNN state
 - J-PARC P89 experiment
 - Measuring the spin-spin correlation between Λ and p from "K⁻pp"→Λp decay
 - $\alpha_{\Lambda p} = 1 (J^{\pi} = 0^{-}), \alpha_{\Lambda p} = 1/3(J^{\pi} = 1^{-})$
 - Spin direction of Λ can be Estimated from pπ decay

- To measure the spin direction
 of the proton using p-C scattering,
 tracker stack should be additionally equipped
 - Scintillating fiber?
 - Straw tube?

Investigation of the spin and parity of the KbarNN state

- Expected result for 8-week data taking
 - $\alpha_{\Lambda p}$ measurement
 - 420 k "K-pp" $\rightarrow \Lambda p$ events
 - 250 times larger than E15
 - When J^P=0⁻ case, J^P= 1⁻ hypothesis Would be excluded more than 95% C. L.
 - "K⁰bar nn" measurement
 - ${}^{3}He(K^{-},p)$ reaction, Reconstruct from "K⁰bar nn" $\rightarrow \Lambda n$
 - Production cross section is expected to strongly depend on J[¬] due to spin-isospin selection rule.
 - $\sigma^*BR \sim 7\mu b/sr (1^- case), \sigma^*BR \sim 1.4\mu b/sr (0^- case)$
 - These measurement would provide conclusive results of J[¬]!

Design and development status of Detectors composing the new CDS

New Spectrometer system (New CDS)

- Large acceptance solenoid spectrometer
 - Superconducting solenoid magnet
 - CDC (Cylindrical Drift Chamber)
 - CNC (Cylindrical Neutron Counter)
 - VFT (Vertex Fiber Tracker)
- Improved performances for compared to existing CDS
 - Solid angle $\times 1.6 (59\% \rightarrow 93\%)$
 - covers 29°<θ_{lab}<151°
 - Neutron detection efficiency
 ×1.7×nlayer×solid angle improvement

Superconducting solenoid magnet

- In order to provide a uniform magnetic field over larger tracking volume, superconducting solenoid magnet is needed.
 - 3.3m x 3.3m x 4.1m
- Developing with the cooperation of the J-PARC Cryogenics Section
- Maximum field of 1.0 T @center , 189A 10V
 - Basic design is the copy of the solenoid in COMET experiment
 - For experiments for kaonic nuclei, we will set 0.7 T, same as existing spectrometer.
- Magnetic field calculation with OPERA-3D (TOSCA)

Superconducting solenoid magnet

- Present status
 - Superconducting coil
 - NbTi/Cu wire
 - Cooled with 3-stage GM Refrigerator
 - 14 coils, 13230 turns in total
 - Winding was started Nov. 2023!

Superconducting solenoid magnet

Present status

- Return yoke
 - Construction completed
 - ~115 t
- Monitor system for quench protection
 - Under preparation
- Vacuum vessel
 - Under consideration
 - Bore dia. = Φ 1.8m, Outer dia. = Φ 2.7m
 - *length* = 3.3*m*, *Weight* = 5.9*t*
 - In design, installation mechanism for detectors is Coupled problem.

1/10 scale Miniature

New Spectrometer system (New CDS)

- Large acceptance solenoid spectrometer
 - Superconducting solenoid magnet
 - CDC (Cylindrical Drift Chamber)
 - CNC (Cylindrical Neutron Counter)
 - VFT (Vertex Fiber Tracker)
- Improved performances for compared to existing CDS
 - Solid angle $\times 1.6 (59\% \rightarrow 93\%)$
 - covers 29°<θ_{lab}<151°
 - Neutron detection efficiency
 ×1.7×nlayer×solid angle improvement

Cylindrical drift chamber

- New CDC is 3 times longer than the existing CDC along beam axis
- For radial direction, the design of new CDC is similar to existing CDC.
 - We can reuse the existing readout/HV-distributor boards

Cylindrical drift chamber

- Structure
 - Wire configuration is similar to the existing CDC
 - 15 layers grouped into 7 super layers (AUVAUVA)
 - Wires in U,V layers are tilted by \pm 2.3-3.0 degrees
 - Slightly smaller tilt angle than existing CDC (\sim 3.5 degrees)
 - 1,816 ch with hexagonal cells
 - 8,064 wires are supported by feedthroughs
 - Resolutions will retain the existing CDC performance
 - 5.3 % for p_T and 0.5 % for β
- Drift gas
 - Ar-Ethane (50:50)
 - Same as the existing CDC
 - or Ar-CO₂(90:10)
 - Cheaper than Ar-Ethane, costs will be saved even for the large drift chamber

x-Axis [cm]

Cylindrical drift chamber

Present status

- Production of Endcaps is completed.
- To make CDC body, we are considering the best balance of rigidity and mass thickness.
 - In total, 1.6 t tension would be applied from wires.
 - 3 times larger than existing CDC In an atter
 - Buckling calculation is difficult...
 - Connecting endcaps with
 "inner CFRP cylinder" and
 CFRP support columns
 - Wire implementation will be started
 The beginning of the next year!

New Spectrometer system (New CDS)

- Large acceptance solenoid spectrometer
 - Superconducting solenoid magnet
 - CDC (Cylindrical Drift Chamber)
 - CNC (Cylindrical Neutron Counter)
 - VFT (Vertex Fiber Tracker)
- Improved performances for compared to existing CDS
 - Solid angle $\times 1.6 (59\% \rightarrow 93\%)$
 - covers 29°<θ_{lab}<151°
 - Neutron detection efficiency
 ×1.7×nlayer×solid angle improvement

Cylindrical Neutron Counter

- scintillator array: 32 segments for one layer
 - 3 layer (full setup), One layer (1st phase)
 - (T)50mm, (W)~130mm, (L)~**3,000mm** Long!
 - Important to realize large solid angle
 - neutron detection efficiency \sim 1% per 10mm thickness
 - Existing CDS:30 mm
 - 1.5-inch FM-PMT [H8409(R7761)]
 - Worked well in the existing CDS environment (0.7T magnetic field along PMT)
- Required timing resolutions
 - For identification of charged particles (π, K, p, ...)
 - \rightarrow 150 ps (flight length \sim 50cm)
 - For detection of neutron with good position resolution
 - \rightarrow 100 ps ($\delta z \sim 2$ cm)

Cylindrical Neutron Counter

Present status

- Prototype tests are ongoing...
- 150 ps resolution is achieved

- To achieve more better (\sim 100ps) resolution, more studies are needed.
 - Position dependence? PMT or MPPC?
 - Light guide: Length? Some treatments to suppress reflection from the other side?

New Spectrometer system (New CDS)

- Large acceptance solenoid spectrometer
 - Superconducting solenoid magnet
 - CDC (Cylindrical Drift Chamber)
 - CNC (Cylindrical Neutron Counter)
 - VFT (Vertex Fiber Tracker)
- Improved performances for compared to existing CDS
 - Solid angle $\times 1.6 (59\% \rightarrow 93\%)$
 - covers 29°<θ_{lab}<151°
 - Neutron detection efficiency
 ×1.7×nlayer×solid angle improvement

Vertex Fiber Tracker

• Detector just around the target ($r \sim 55$ mm)

- 4 layers of Φ 1mm scintillating fibers UU'VV'
 - Each layer tilted by $\sim \pm 50$ degrees
- 896 (= 224x4) channels
- Readout: MPPC + "CIRASAME" module
 - Multihit TDC for Leading and Trailing edge

Efficient for

Background

 $\left(\frac{\delta P_T}{P_T}\right)$

reduction

Spectrometer performance will be improved

- Vertex resolution of the beam direction ~ 1 cm (CDC only) $\rightarrow \sim 1$ mm (CDC+VTF)
- Solid angle covering the target region 97% of $4\pi(15^{\circ}-165^{\circ})$
- Momentum/mass resolution
 L=~30cm (CDC only) → ~43cm (CDC+VFT)

Vertex Fiber Tracker

Present status

- Inserting VFT to existing CDC, test data was taken
 - w/cosmic ray and π^- , (K⁻) beam
 - Analysis and performance evaluation is ongoing...

(Honest) VFT situation

- Many (\sim 80 /896 fibers) have some trouble
 - Core of fiber was damaged. (in fabrication process)
 - We (and maker) are investigating how to repair them...

Optical glue + capton sleeve

Beamline Detectors

- Expected beam condition
 - K⁻: 420k /(spill=4.2 s)
 - $K^{-}/\pi \sim 0.7$ (1.2M particle /spill)
- Trigger counters
 - Three hodoscopes(BHT, TO, DEF)
 - One Aerogel Cherencov counter
- Chambers
 - Two beam line chambers (BDCa,b)
 - A chamber just before target (VDC)
- Basically, existing detectors can be used.

Beamline Detectors

- Expected beam condition
 - K-: 420k/(spill=4.2 s)
 - K-/π- ∼0.7 (1.2
- Trigger counters
 - Three hodoscop
 - One Aerogel Ch
- Chambers
 - Two beam line d
 - A chamber just before target
- Basically, existing detectors
 can be used.

BHD (old

Beam hodoscope)

3 m

BHT

DEF VDC

AC

Q8

D4

BHT (new

Construction schedule

- Installation and Beam line upgrade will start the end of FY2024- or beginning of FY2025.
- Commissioning run for new spectrometer will be performed the end of FY2025 or FY2026.
 - LH₂ target, for about 1 week beamtime
- physics run with new spectrometer will be started FY2026 or FY2027
 - 1st step: J-PARC E80 experiment
 - Search for KbarNNN via ⁴He(1 GeV/c K⁻,n) reaction

		FY2022				FY2023			FY2024				FY2025				FY2026-	
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4		
SC Sorenoid	Design Purchase (Yoke, SC wire)				Construction					Installation & test				ing	Ē			
NC	Design & prototy					ype test pur				& assem	ıble	test & commissioning			atio	ssior	cs ru	Analysis &
CDC	Design							Const	Construction test & c				commissioning			nmi	hysid	publication
VFT	Des	Design & production test & pe					& performance evaluation									Col	Ъ	
K1.8BR beam line	E73 (lifetime measurement of hypertriton) exp						ton) expe	eriment	E72 (Λ* resonance search with HypTPC			nance vpTPC)	e upgrade			1st experiment with new CDS: J-PARC E80 experiment		
Next beamtime?																		

Summary

- J-PARC E15 experiment @ K1.8 BR beamline successfully founded the existence of "K⁻pp" states using the in-flight K⁻ +³He reaction with an exclusive analysis of the Λpn final state.
- Further investigations for kaonic nuclei are needed

to establish the kaonic nuclei

- Mass number dependence?
- Spin and parity of the "K⁻pp"?
- We are developing a new magnetic spectrometer
 - Large solid angle (93 % of 4π)
 - thicker plastic scintillator (×5 neutron detection efficiency)
 - Momentum/position resolutions will retain or will be improved
- Construction will be finished in FY2025 and Physics run with new spectrometer will be started FY2026
- If you are interested in or/and have ideas for the experiments with the spectrometer, we are welcome!

backup

KbarN interaction

- Important subjects to understand meson-baryon interactions in low-energy QCD
- Attractive KbarN (I=0) interaction
 - Specific property of KbarN interaction
 ⇔πN interaction is repulsive in S-wave
 - Λ(1405) can be interpreted as a quasi-bound state of KbarN
 - The lightest Kaonic nuclei: "K-pp"
 - Many experiments tried to establish the existence
 - However, various results have been reported.
 - Positive: FINUDA@DAFNE, DISTO@SATURNE, E27@J-PARC
 - Negative: AMADEUS@DAFNE, HADES@GSI, LEPS@SPring-8

K⁰nn cross section and spin-isospin selection

Trigger counters

- BHD->BHT (Beam Hodoscope Detector/Tracker)
 - Most upstream scintillator hodoscope
 - 4m before TO: Δt_{BHT-TO} (K- and π -)=2.5 ns
 - Effective size 300 x 150 mm
 - We are developing new one
 - Old one is damaged by radiation for long years
 - Fine segmented (20-mm width-> 7.5-mm width, staggered)
- T0 counter (already existing)
 - Define time zero, between beam line spectrometer and CDS
 - Effective size 160 x 160 mm, 5 segments
- DEF (Beam Definition Counter, already existing)
 - Locate just upstream of target to select beams that hits the target
 - Effective size 100 x 100 mm, 5 segments

Proto-type test is ongoing...

Aerogel Cherenkov counter

- Already existing
- Index:1.05
- downstream of TO
- size: 180 x 100 x 100 mm
- Average # of photons for pions: ~15
 - pion efficiency >99%
 - misidentification ratio of K as $\pi \sim 1\%$

Beam Line Chambers

- BLC (Beam Line Chamber)
 - between beam line spectrometer and TO
 - 160 x 160 mm effective area
 - 32 sense wires, 2.5 mm drift length
 - Typical resolution: ~150 μm
 - 8 layers (UU'VV'UU'VV') x2
- VDC (Beam vertex chamber)
 - Upstream of DEF (near target)
 - 32 sense wires, 3.0 mm drift length
 - Typical resolution: ~150 µm
 - ϕ 197 mm effective area
 - 8 layers (XX'YY'XX'YY')

