
Summary of Schedule and Status

F.Sakuma, RIKEN 2023 12/14 (optimistic)

Earliest Schedule

- We will start E80 in FY2026
 - Detector construction ~ 3 years
 - Superconducting solenoid magnet
 - CDC (cylindrical drift chamber)
 - CNC (cylindrical neutron counter)
 - Target system modification
 - K1.8BR modification ~ 6 months
 - on-site assembly, test, and filed measurement of the magnet ~ 6 months
 - Installation of the CDS ~ 4 months

Setup@K1.8BR

• Present CDS ~ before summer of FY2024

✓E73 (³_∧H lifetime) 25d@80kW

need 9 months

• **Hyp-TPC** ~ before summer of FY2025

✓E72 (Λ*) 14d@80kW

need 1 year

• New CDS with K1.8BR modification

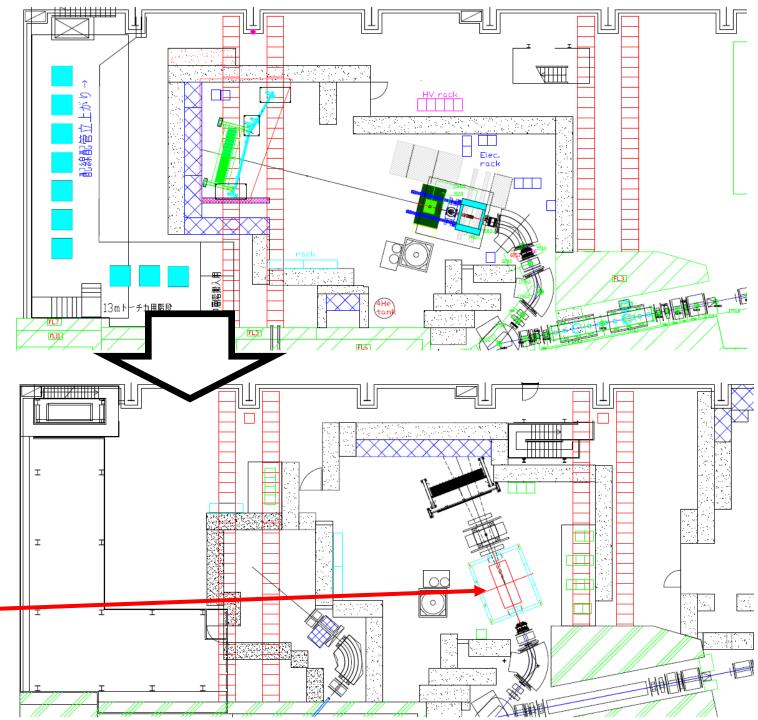
✓E80 ($K^{-}ppn \rightarrow \Lambda d/\Lambda pn$) ~14+21d@90kW

✓ P89 (J^P(K⁻pp)) 56d@90kW

✓ E57 (K⁻d atm) 7d@80kW → ~30d@80kW

K1.8BR Upgrade

During FY2025


before

- Remove D5 magnet
- Rearrange shield
- Move beam-dump

New CDS

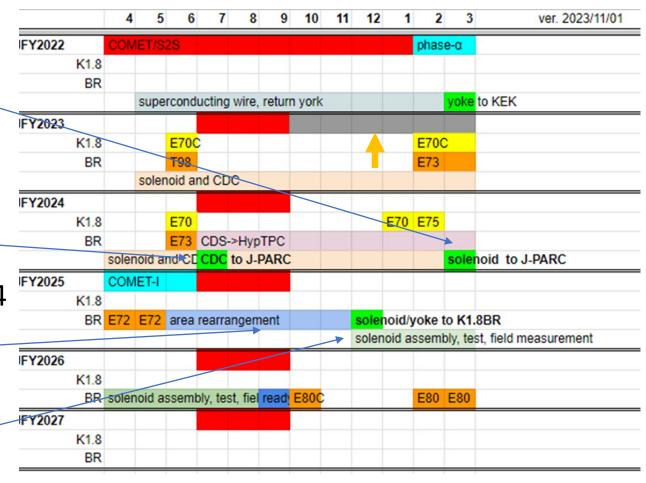
after

Status of Construction

Return yoke

- Completed (Tsukuba KEK-ERL)
- Superconducting solenoid magnet
 - Under construction
 - Will be completed in the end of FY2024

CDC


- Under construction
- Will be completed in the middle of FY2024

• NC

- R&D at ELPH
- Efforts are underway to obtain budget

Support structure

Under design with a design firm

Strategy of the Project

- for systematic study of kaonic nuclei -

	Reaction	Decays	Key	Experiment
$\overline{K}N$	<i>d</i> (K⁻,n)	$\pi^{\pm0}\Sigma^{70}$	n/ γ identification	Future
K NN	³He(K ⁻ ,N)	$\Lambda p/\Lambda n$	polarimeter	P89
KNNN	⁴ He(K ⁻ ,N)	arLambdad/ $arLambda$ pn	large acceptance	E80
K NNNN	⁶ Li <i>(K⁻,d)</i>	Λt/Λdn	many body decay	
$\overline{K}\alpha\alpha$	⁹ Be(<i>K⁻,n</i>)	Λ t $lpha/\Lambda$ dn $lpha$	lpha identification	Future
$\overline{K}\overline{K}NN$	$ar{p}$ + 3 He	$\Lambda\Lambda$	$ar{p}$ beam yield	Future (LoI)

1. Nuclear number dependence study with K-ppn and K-ppnn

FY2026~

- Many body decay measurement with the NC
- Line shape, decay branch, Dalitz's plot → internal structure
- Feasibility test of the polarimeter system
- 2. Spin/parity measurement with K-pp (and K-ppn)

FY2027~?

- Polarimeter system with straw tubes? fiber scint?
- 3. Heavier nuclei, such as $K-\alpha\alpha$ with $^9Be(K-,n)$? FY2033~?
- 4. Double kaonic nuclei?

What we need to do?

- Stage-2 approval of E80
 - TDR re-submission in May 2024
 - Stage-2 request in July 2024 PAC
- Budget request
 - Interview for Grant-in-Aid Kiban-S on January 23, 2024 (200M JPY ~ 1.3M EURO)
 - In Italy? Austria?
- CDC construction
 - We will restart the construction after Christmas
- Design of the polarimeter
 - Straw tubes? Scintillation fibers? Outer CDC? How to install?