Hypertriton lifetime puzzle and our solution

y.ma@riken.jp

2024/03/05

Outline

- Introduction & motivation
- ✤ J-PARC E73:
 - Experimental method
 - Current status
- Summary

Nucleon vs Hyperon

- 1. First step for a unified baryonbaryon interaction
- 2. Expanding our view from the Earth to neutron star
- 3. Probing nuclear structure

pictures taken from Hyp06 poster and Nature

Probing nuclear structure

Quiz: ³^AH vs ²⁰⁸Pb which one is "bigger"?

- A good homework for your students
- * Hint: a harmonic oscillator toy model, or, $r \sim sqrt(\hbar^2/4uB_{\Lambda})$
- Hypertriton: Λ (T=0) + d(T=0) @ ~130keV
- Answer: Hypertriton ~10fm is "bigger" than ²⁰⁸Pb ~7fm assuming liquid drop model

DOI: 10.1088/0954-3899/23/4/002

Motivation for J-PARC E73 experiment

As the lightest hypernucleus, ³^AH should tell us some important fact of YN interactions just as deuteron for nuclear physics.

Up to a few years ago, we believe: $\tau \approx 263 \text{ ps} (B_{\Lambda} = 130 \pm 50 \text{ keV}).$

 ${}^{3}\Lambda H \rightarrow {}^{3}He + \pi$ - decay probability: kinematics× | transition matrix | ² ~ phase space×wave function overlap a small term (separation of ~10fm)

A well separated wave function between Λ and deuteron implies small modification of ${}^{3}_{\Lambda}$ H lifetime from deuteron and, thus, its lifetime should be presumably determined by free Λ decay.

Motivation for J-PARC E73 experiment

As the lightest hypernucleus, ³_AH should tell us some important fact of YN interactions just as deuteron for nuclear physics.

Hypertriton lifetime puzzle challenges the very foundation of our knowledge for hypernucleus.

Collaboration	Experimental method	$^{3}_{\Lambda}$ H lifetime [ps]	Release date	ľ
HypHI	fixed target	183^{+42}_{-32} (stat.) ± 37 (syst.)	2013 [4]	
STAR	Au collider	142^{+24}_{-21} (stat.) ± 29 (syst.)	2018 [2]	
		221±15(stat.)±19(syst.)	2021 [6]	
ALICE	Pb collider	181^{+54}_{-39} (stat.) ± 33 (syst.)	2016 [3]	
		253±11(stat.)±6(syst.)	2023 [5]	

TABLE I. Summary of recent measurements on $^{3}_{\Lambda}$ H lifetime.

Up to a few years ago, we believe: $\tau \approx 263 \text{ ps} (B_{\Lambda} = 130 \pm 50 \text{ keV});$ However, heavy ion experiments suggest $\tau \approx 180 \text{ ps...}$

Introduction: hypertriton lifetime puzzle

What happened? What shall we do?

E73 experimental: direct lifetime measurement

The idea of *direct measurement*: $T_{CDH}-T_0=t_{beam}+t_{\pi}-+\tau$;

- 1. A complementary measurement for Heavy Ion results
- 2. Achievable precision: $\sigma/\sqrt{N} < 20$ ps
- 3. Direct lifetime measurement with fixed J=1/2 state

$^{3}\text{He}(\text{K}^{-}, \pi^{0})^{3}_{\Lambda}\text{H}$ vs heavy ion production

Experiment	J-PARC E73	BNL STAR
Production method	³ He(K-, pi0) ³ лН	Au+Au
Microscopic process	Strangeness exchange	Thermal model; Coalescence model
PID	pi- momentum	Invariant mass;
Quantum number	spin=1/2 dominant	1/2 and 3/2 mixture?
Lifetime derivation	Time of flight	Decay length

Once upon a time... an ambitious project for Neutral Meson Spectroscopy

 $(K^{-}, \pi^{0}) vs (K^{-}, \pi^{-}):$

- Motivation: isospin mirror hypernucleus on T=0 target
- Method: measure π^0/π^2 momentum

Working principle:

- * γ converter
- Tracking chamber
- Calorimeter
- * γ opening angle \oplus energy

Fig. 1. A schematic diagram of the detector. The orientation of the two arms with respect to each other and to the scattering target is indicated. Also indicated is the convention for the x and y coordinates.

$$E_{\pi^0} = E_1 + E_2 = m_{\pi^0} \sqrt{\frac{2}{(1 - \cos\eta)(1 - X^2)}}$$

H.W. Baer, et al., Nucl. Inst. Meth. 180 (1981) 445

Once upon a time... an ambitious project for Neutral Meson Spectroscopy

Neutral Meson Spectrometer

- Constructed at Los Alamos and shipped to BNL
- MM resolution ~3MeV (design value ~1MeV)
- Bad resolution compare to (γ, K^+) channel

A. Rusek, et al., Nucl. Phys. A 639 (1998) 111c

Revisit π^0 decay kinematics

* π⁰ tagger needs to be *located along beam line* * Fast response, radiation hardness

Do we *really* need missing mass?

Input *π*⁰: 0~1GeV/c; 0~180deg

³He(K-, pi0)³ $_{\Lambda}$ H strangeness exchange reaction is known for its spin non-flip feature --> helps to pin down the ³ $_{\Lambda}$ H Q.N. W / PbF2 calorimeter cut π^0 : 0.8~1GeV / c; 0~10deg

Can we construct a fast calorimeter?

- * π^0 tagger needs to be *located along beam line*
 - * Nobody has ever put a calorimeter IN the intensive beam
- ✤ Main stream: slow inorganic scintillator of µs signal tail
- Inspired by MAMI A-4 spectrometer
 - postdoc with Prof. Frank Maas, 2009~2011

PbF2 calorimeter as π^0 tagger (inspired by A4)

Crystal	Radiation length	Moliere radius	Density	Cost	Resolution	Signal length
PbF ₂	0.93 cm	2.22 cm	7.77 g/cm ³	12 USD/cc	5%	2ns

D.F. Anderson, *et al.*, Nucl. Inst. Meth. A290 (1990) 385 P. Achenbach, *et al.*, Nucl. Inst. Meth. A416 (1998) 357

PbF2 calorimeter performance @ELPH

J-PARC E73 staging & status

Staging:	Pilot (June, 2020)	Stage-1 (May, 2021)	Stage-2
Task:	Background study with ⁴ He(K-,pi0) ⁴ лH	First measurement for ³ He(K-, pi0) ³ ^A H reaction	Direct lifetime measurement for ³ _A H
Output:	Established a new method as: (K-,pi0) + decay spectrum	Production cross section study for ³ ^A H @ 1GeV/c	Pin down Hypertriton lifetime puzzle
Status:	⁴ ^A H lifetime paper published by PLB	Successfully observed ³ ^A H from mesonic weak decay	Request for beam time allocation (80kWx25days)

Pilot run results: ⁴_AH lifetime

1.5

Stage-1 results: ${}_{\Lambda}^{3}$ H cross section

- First measurement for ³He(K-, pi0)³_AH reaction cross section;
 direct determination of ³_AH
 ground state spin;
- Ready for E73 Stage-2 beam time with 25days @ 80kW beam time for ~1k 2-body decay events scaled with Phase-1 data
- Expected precision for ${}^{3}_{\Lambda}$ H lifetime:
 - statistical error ~20 ps;
 - systematic error ~20 ps based on the ${}^{4}_{\Lambda}$ H result

Dr. T. Akaishi's new approach for ${}_{\Lambda}^{3}H B_{\Lambda}$

Dr. T. Akaishi successfully derived B_{Λ} with impressive precision by measuring $\sigma_{3}_{\Lambda}H/\sigma_{4}_{\Lambda}H$ obtained from E73 pilot run and Stage-1 data utilizing the fact that the production cross section is sensitive to B_{Λ} as supported by Prof. Harada

PhD thesis submitted to Osaka University 10.1016/j.nuclphysa.2021.122301

- E73 aims to shed light on the Hypertriton lifetime puzzle
 - We established a new method to investigate the isospin mirror hypernuclei by gamma-ray tagging
 - E73 is ready for final data taking NEXT MONTH
- * 岩崎さん、おめでとうございます!
- Thank you for your patience!

E73/T77 collaborator list

T. Akaishi¹, H. Asano², X. Chen⁵, A. Clozza⁷, C. Curceanu⁷, R. Del Grande⁷, C. Guaraldo⁷, C. Han⁵,
T. Hashimoto⁴, M. Iliescu⁷, K. Inoue¹, S. Ishimoto³, K. Itahashi², M. Iwasaki², Y. Ma², M. Miliucci⁷,
R. Murayama², H. Noumi¹, H. Ohnishi¹⁰ S. Okada², H. Outa², K. Piscicchia^{7,9}, A. Sakaguchi¹, F. Sakuma², M. Sato³, A. Scordo⁷, K. Shirotori¹, D. Sirghi^{7,8}, F. Sirghi^{7,8}, S. Suzuki³ K. Tanida⁴, T. Toda¹, M. Tokuda¹, T. Yamaga², X. Yuan⁵, P. Zhang⁵, Y. Zhang⁵, H. Zhang⁶

¹Osaka University, Toyonaka, 560-0043, Japan
 ²RIKEN, Wako, 351-0198, Japan
 ³High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan
 ⁴Japan Atomic Energy Agency, Ibaraki 319-1195, Japan
 ⁵Institute of Modern Physics, Gansu 730000, China
 ⁶School of Nuclear Science and Technology, Lanzhou University, Gansu 730000, China
 ⁷Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy
 ⁸Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), Magurele, Romania
 ⁹CENTRO FERMI - Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, 00184 Rome, Italy
 ¹⁰Tohoku University, 982-0826, Sendai, Japan

backup

d