理研で取り组んだ物理•学んだこと（失欺談を交えて）
 Physical Researches conducted at RIKEN －as a Chief Scientist－

次世代研究者へ: 失欺を恐れず挑戦的な研究を!

IWASK2024－05／03／2024

Masahiko IWASAKI

Meson Science Laboratory

A Slide from Interim Review of Institute Laboratory Assessment in 2006

Meson Science Laboratory
－covers wide variety of field by the variety of researchers－

nuclear physics

mesonic atoms（atomic physics／nuclear physics）
mesons in nuclei（nuclear physics）－today！
＾in nuclei（nuclear physics）TWASK2024 ゲはここの話を
muon science
UCF ：muon catalyzed fusion（chemistry／atomic physics／nuclear physics）
$\mu \mathrm{SR}$ ：muon spin rotation／resonance ．．．（condensed matter physics）
$\mu \mathbf{A}^{*}$ ：muonic atoms（nuclear physics）
cold－μ ：muon magnetic microscope／muon g－2
（particle physics／atomic physics／condensed matter physics）

Mössbauer

in－beam M ：RI－beam Mössbauer spectroscopy （condensed matter physics）

日時：2024年3月5日（火）9：30－18：00
場所：理化学研究所 大河內記念ホール
先ごろJ－PARCで生成•分光に成功した K－pp 束縛核に関する一連の研究は，粒子描像があやうくなるほどコンパクトな陽子間距離を示唆 し，高密度物質である原子核内におけるハドロンの粒子性と量子性と いう本質的問題を提起しています。ここで提起された問題は，原子核 という舞台においてのみならず，固体疑縮物質中の電子が示す量子相転移とも密接な関係にあります。K中間子研究はハドロン研究の一分野としての位置づけを超え，物質の階層性をまたいだ新たな学際研究 へと広がる可能性を秘めています。この好機に，K中間子および関連 するトピックをあつめたワークショップを開催し，未来の中間子科学 が取り組むべき課題は何か，指針を探る機会としたいと思います。

講演者

松田䓇幸，石田勝彦，神田聡太郎，渡邊功雄，藤山茂樹，馬越，橋本直，西隆博，板橋健太，四日市悟，岡田信二，岩崎雅彦（順不同）

申し込み方法
https：／／indico2．riken．jp／e／iwask2024
問い合わせ先 iwask2024＠ml．riken．jp（板橋•藤山•山本）

－IWASI2024 —

To organizers，thank you for giving me a chance to talk． To speakers，all the participants and secretaries，thank you for joining．

$$
\begin{aligned}
& \text { named and organized by K. Itahashi and S. Fujiyama } \\
& \text { with helps from researchers who have been contributed } \\
& \text { Meson Science Laboratory in RIKEN }
\end{aligned}
$$

I apologize for not being able to cover my contributions as Chief Scientist at RIKEN due to time constraints．

I hope the missing parts are well covered by the other speakers of IWAST2024．

A Typical Experimental Research Cycle

Objective：	Ansatz Unsolved Problem Why and How？
Methodology	

A Typical Experimental Research Cycle

A Typical Experimental Research Cycle

A Typical Experimental Research Cycle

A Typical Experimental Research Cycle

Objective： Unsolved Problem Why and How？

Ansatz Assumption Methodology

Identify problems in previous methodology
Proceed to Other Problem Consider alternative／better methodology
mistake／hidden bias in the analysis

A Typical Experimental Research Cycle

Objective： Unsolved Problem Why and How？

Ansatz Assumption Methodology

Result：
Positive

Further Problem？ Verification
 mistake／hidden bias in the analysis－Must be corrected，and open that to public．

A Typical Experimental Research Cycle

Objective： Unsolved Problem Why and How？

Ansatz Assumption Methodology

 mistake／hidden bias in the analysis－Must be corrected，and open that to public． －To encourage ambitious research， failure must be embraced．

```
完全にミスを防ぐことは不可能。
```

间違いは許容されるべき

A Typical Experimental Research Cycle

Objective： Unsolved Problem Why and How？

Ansatz Assumption Methodology

Identify problems in previous methodology
Proceed to Other Problem Consider alternative／better methodology
mistake／hidden bias in the analysis－Must be corrected，and open that to public．
－To encourage ambitious research， failure must be embraced．
完全にミスを防でことは不可能。间違いは許容されるべき
pretend to be positive－unacceptable scientific misconduct
決して許容どきない。過度な佮理教育•研究者の引き缔めは愚策

Let me start from a mile－stone experiment，which makes me to be a Principal Investigator（PI）

The KpX experiment

＂It takes three years from gaining PhD in 1987 to develop original research ideas in 1990，and another seven years to get the first results reported in 1997．＂
…本質的革新を斎すための手段を真挚に模索…
…良い研究は10年位は平然とかかる…

My first success as a researcher

Resolving the kaonic hydrogen puzzle is a must

Physical Review D

VOLUME 50
1 AUGUST 1994
THE $\Lambda(\mathbf{1 4 0 5}) \quad$ by R．H．Dalitz，Oxford University

The present status of the $\Lambda(1405)$ thus depends heavily on theoretical arguments，a somewhat unsatisfactory basis for a four－star rating．Nevertheless，there is no known reason to doubt its existence or quantum numbers．A measurement of the energy－level shifts and widths for the atomic levels of kaonic hydrogen（and deuterium）would give a valuable check on analysis of the $(\Sigma \pi, N \bar{K})$ amplitudes，since the energy of the $\mathrm{K}^{-} \mathrm{p}$ atom lies roughly midway between those for the two sets of data．The three measurement of（ $\Delta \mathrm{E}-i \Gamma / 2$ ）for kaonic hydrogen are inconsistent with one another and require that the sign of $\operatorname{Re}\left(A_{I=0}+A_{I=1}\right)$ be opposite that deduced from $N \bar{K}$ reaction data（see BATTY 89）．Accurate measurements of（ $\Delta \mathrm{E}-i \Gamma / 2$ ）values for kaonic hydrogen are badly needed， but may not be possible until the KAON factory becomes operational．

Kaonic Atom Formation

Previous data on the kaonic hydrogen

Can you really see signals in these spectra?

Theories and Experimental results are inconsistent
 experimental methods are insufficient!

How to improve?

My first proposal to PAC（実験課題審査会）：

困難解决に向けた方策

Simply REJECTED ．．．Insufficient to convince reviewers
Consider more about how to initiate the break through to overcome experimental difficulties？

Second proposal to PAC：．．．break through ideas

－Gas Target（liquid previously）
Stark Free（drastically improve S／N）
－Background Free（reduce noise）
Final state tagging／Specify reaction point

Reaction	Produced Particles	Branching Ratio	$\begin{gathered} \pi / \mu / e \text { Multiplicity } \\ (>150 \mathrm{MeV} / \mathrm{c}) \end{gathered}$	γ Multiplicity
Free Decay of K^{-}				
$\mu^{-} \nu$	$\mu^{-} \nu$	63.5 \％	1	0
$\pi^{-} \pi^{\circ}$	$\pi^{-} 2 \gamma$	21.2 \％	1	2
$\pi^{-} \pi^{-} \pi^{+}$	$\pi^{-} \pi^{-} \pi^{+}$	5.59 \％	0	0
$e^{-} \pi^{\circ} \nu$	$e^{-} 2 \gamma$	4.82 \％	1	2
$\mu^{-} \pi^{\circ} \nu^{\circ}$	$\mu^{-2 \gamma}$	3.18 \％	1	2
$\pi^{-} \pi^{0} \pi^{\circ}$	$\pi^{-} 4 \gamma$	1.73 \％	0	4
K^{-}p Reaction				
$\Sigma^{+} \pi^{-}$	$\pi^{-2 \gamma p}$	10%	1	2
$\Sigma^{+} \pi^{-}$	$\pi^{-} \pi^{+} \mathrm{n}$	10%	2	0
$\Sigma^{-} \pi^{+}$	$\pi^{+} \pi^{-} \mathrm{n}$	46%	2	0
$\Sigma^{\circ} \pi^{\circ}$	$\pi^{-} 3 \gamma \mathrm{p}$	18%	0 ving	－${ }^{3}$ a
$\Sigma^{\circ} \pi^{\circ}$	$5 \gamma \mathrm{n}$	10%	goving	Y ${ }^{\text {as a }}$
$\Lambda \pi^{\circ}$	$\pi^{-2 \gamma \mathrm{p}}$	4 \％	baskgrou	nd sourrce
$\Lambda \pi^{\circ}$	$4 \gamma \mathrm{n}$	2%	0	4

Require kaonic hydrogen atom formation
－X－ray detector in Hydrogen Gas Si（Li）without x－ray window Drastically improve signal
ACCEPTED by fully convincing reviewers．．．
Won a strong budgetary support from KEK（K．Nakai）

Succeeded in Kaonic Hydrogen x－ray Measurement

The European Physical Journal C
 Volume $15 \cdot$ Number 1－4 • 2000
 THE Λ（1405）
 Revised March 1998 by R．H．Dalitz，Oxford University

From the measurement of $2 p-1 s \times$ rays from kaonic－ hydrogen，the energy－level shiff ΔE and width Γ of its 1 s state can give us two further constraints on the（ $\overline{\Sigma \pi}, N K$ ） system，at an energy roughly midway between those from the low－energy hydrogen bubble chamber studies and those from $\mathrm{qR}(\Sigma \pi)$ observations below pK^{-}threshold．IWASAKI 97 have reported the firsteonvincing observation of this x ray， with a good initial estimate：

$$
\begin{equation*}
\Delta \mathrm{E}-i \Gamma / 2=(-323 \pm 63 \pm 11)-\mathrm{i}(204 \pm 104 \pm 50) \mathrm{eV} . \tag{2}
\end{equation*}
$$

the errors here encompass about half of the predictions made following arious analyses and／or models for the in－flight $\mathrm{K}^{-} \mathrm{p}$ and sub－threshold $\mathrm{qR}(\Sigma \pi)$ data．Better measurements will be needed to discriminate between the analyses and pre－ dictions．．．．，perhaps from the DAФNE storage ring at Frascati information vital for our quantitative understanding of the $(\Sigma \pi, N K)$ system in this region．

．．．leads Associate

 Professor position in TITech，and successively to Chief Scientist position in RIKEN
What＇s next in physics？

実験困難を越えた先？

Does $\overline{\mathbf{K}} \mathbf{N}$ interaction repulsive？

R．Seki，Phys．Rev．C5（1972） 1196
S．Baird et al．，Nucl．Phys．A392（1983） 297 C．J．Batty，Nucl．Phys．A508（1990）89c
K束缚核の存在? !

Does $\overline{\mathbf{K}} \mathbf{N}$ interaction repulsive？

R．Seki，Phys．Rev．C5（1972） 1196
S．Baird et al．，Nucl．Phys．A392（1983） 297 C．J．Batty，Nucl．Phys．A508（1990）89c
K束缚核の存在?!

Does $\overline{\mathbf{K}} \mathbf{N}$ interaction repulsive？

Does $\bar{K} \mathbf{N}$ interaction repulsive？

実験結果が示すもの？

R．Seki，Phys．Rev．C5（1972） 1196
S．Baird et al．，Nucl．Phys．A392（1983） 297 C．J．Batty，Nucl．Phys．A508（1990）89c

No！strongly attractive！

Kaonic Nuclear state exists？

K束缚核の存在?!

The KpX experiment triggers kaonic nuclear bound state search， world wide

…K中间子原子核探査競争の時代へ…

What is $\Lambda(1405) ?$

$$
\Lambda(1405) っ \text { てどういうもの? }
$$

－Is it quark excited state of $\boldsymbol{\Lambda}$ baryon（uds）？

From $\Lambda(1405)$ to kaonic nuclei

Is $\Lambda(1115)$ an excited state of uds？

From $\Lambda(1405)$ to kaonic nuclei

with $\bar{q} q$（ χ－condensate）in vacuum

$q \bar{q}$

$$
\begin{aligned}
& \text { 真空は何もない空间ではなく, } \\
& \bar{q} q \text { が対となっ な凝缩している } \\
& \text { と思われている }
\end{aligned}
$$

$$
\text { 真空の } \bar{q} q \text { 凝縮と } \Lambda \text { (1405) }
$$

From $\Lambda(1405)$ to kaonic nuclei

 two color－singlet objects bound by meson exchange ：$$
p=K^{-}
$$

$\Lambda(1405)$ in $q 9 q$ \＆meson－baryon 多彩なк中间子核の存在？

$\Lambda(1405)$ is on－site of＂hadronization＂，where stretched－gluon capture $\bar{q} q$ from vacuum
$\Lambda(1405)$ in $q 9 q$ \＆meson－baryon 多彩なк中间子核の存在？

$\Lambda(1405)$ is on－site of＂hadronization＂，where stretched－gluon capture $\bar{q} q$ from vacuum
$\Lambda(1405)$ in $q q q$ \＆meson－baryon 多彩なк中间子核の存在？

$\Lambda(1405)$ is on－site of＂hadronization＂，where stretched－gluon capture $\bar{q} q$ from vacuum
$\Lambda(1405)$ in $q q q$ \＆meson－baryon 多彩なк中间子核の存在？

$\Lambda(1405)$ is on－site of＂hadronization＂，where＂$K^{-} p p$＂will exist stretched－gluon capture $\bar{q} q$ from vacuum

First trial to search for Kaonic Nuclei resulted in wrong interpretation in 2004.

The biggest Failure

＂It was very difficult to overcome the challenges caused by the mistake．＂
…间違いに気がついた時は悪夢•问題特定とその公表に3年•観測成功（污名返上？）に11年…

最初 OK中習子核探査研究

First trial to search for Kaonic Nuclei

via kaon absorption at－rest in ${ }^{4} \mathrm{He}$ target

Reaching wrong conclusion faked by data
dedicative simply for neutron spectroscopy

K中间子核検証研究
 Verification Study by ourselves gave Negative Result！

Obviously，we were in BIG BIG trouble ．．．
i¿ What Happened？！
Ansatz in E549／E570
If we upgrade our setup dedicative for proton spectroscopy，we can get confirmative proton spectrum．

Replace thin charge－veto counters to high resolution（thicker）counters
for proton TOF

K中间子核検証研究

何を间達ったか？

Verification Study by ourselves gave Negative Result！

Obviously，we were in BIG BIG trouble ．．． i¿ What Happened ？！

Ansatz in E549／E570
If we upgrade our setup dedicative for proton spectroscopy，we can get confirmative proton spectrum．

Replace thin charge－veto counters to high resolution（thicker）counters
for proton TOF

The answer is：
＂The imperfect analysis hidden in insufficient experimental setup＂
More specifically，imperfect sluing correction
K中间子核検証研究

Verification Study by ourselves gave Negative Result！

Obviously，we were in BIG BIG trouble ．．．
i¿ What Happened ？！
Ansatz in E549／E570
If we upgrade our setup dedicative for proton spectroscopy，we can get confirmative proton spectrum．

The answer is：
＂The imperfect analysis hidden in insufficient experimental setup＂
More specifically，imperfect sluing correction

MIPS：標準的に較正に使われる高速粒子 time［nsec］
K中间子核検証研究

Verification Study by ourselves gave Negative Result！

Obviously，we were in BIG BIG trouble ．．．
¡¿ What Happened？！
Ansatz in E549／E570
If we upgrade our setup dedicative for proton spectroscopy，we can get confirmative proton spectrum．

The answer is：
＂The imperfect analysis hidden in insufficient experimental setup＂
More specifically，imperfect sluing correction

Replace thin charge－veto counters to high resolution（thicker）counters for proton TOF

MIPS：標準的に較正に使われる高速粒子 time［nsec］
K中间子核検証研究

Verification Study by ourselves gave Negative Result！

Obviously，we were in BIG BIG trouble ．．．
i¿ What Happened ？！

Ansatz in E549／E570

If we upgrade our setup dedicative for proton spectroscopy，we can get confirmative proton spectrum．

The answer is：
＂The imperfect analysis hidden in insufficient experimental setup＂
More specifically，imperfect sluing correction

Replace thin charge－veto counters to high resolution（thicker）counters for proton TOF

MIPS：標準的に較正に使われる高速粒子 time［nsec］

Why we were FAKED...

We shall publish the reason why we were faked, because we found our mistake by ourselves.
identified by M. Sato (the one who cannot come today) ...
What will happen if sluing correction is slightly mistuned by 5 ps / MeV ?

$\propto 1$ / proton momentum

Why we were FAKED...

We shall publish the reason why we were faked, because we found our mistake by ourselves.
identified by M. Sato (the one who cannot come today) ...

What will happen if sluing correction is

 slightly mistuned by 5 ps / MeV ?

Pulse Hight anomaly forms a spurious peak in the momentum spectrum at exactly the same place where we found a fake signal

Why we were FAKED．．．

We shall publish the reason why we were faked， because we found our mistake by ourselves．
identified by M．Sato（the one who cannot come today）．．．
What will happen if sluing correction is slightly mistuned by 5 ps／MeV ？

Pulse Hight anomaly forms a spurious peak in the momentum spectrum at exactly the same place where we found a fake signal

This is a very hard lesson for us．

This doesn＇t mean there＇s non－existence of kaonic nuclear bound state．

Background is very severe in kaon reaction at－rest．

Eur．Phys．J．C 79， 190 （2019）

How to discriminate K－nucl．formation signal out from severe backgrounds？

闲話休題：今一度どう取り组むべきか根本的に考える…
Let me digress on what I learned as a researcher on
What is the most important point as a researcher to realize break through achievement
如何に革新的成果を導〈か?

What questions to be addressed ...

is the source of research

Differentiate from previous approach
 ```様々な角度からベストを探る```

Looking at the same problem from a different angle can make it easier．

What questions to be addressed ．．．

is the source of research

Differentiate from previous approach

Looking at the same problem from a different angle can make it easier．

Communication with others

Nobody can do anything alone（at least for experimental research）． Communication is the starting point for the collaboration．
Diversity can be a source of unique idea．
一人じゃ何も出来ない
人との関わりによる相互触発

What questions to be addressed ．．．

is the source of research
（

Differentiate from previous approach

Looking at the same problem from a different angle can make it easier．

Communication with others

Nobody can do anything alone（at least for experimental research）． Communication is the starting point for the collaboration．
Diversity can be a source of unique idea．
一人じゃ何も出来ない
人との関わりによる相互触発

What questions to be addressed ．．．

is the source of research

Having several

strengths to be proud of as a researcher

Collaboration through division of speciality／role in the collaboration．

Differentiate from previous approach

Looking at the same problem from a different angle can make it easier．

Communication with others

Nobody can do anything alone（at least for experimental research）． Communication is the starting point for the collaboration．
Diversity can be a source of unique idea．
一人じゃ何も出来ない
人との関わりによる相互触発

What questions to be addressed ．．．
 is the source of research Having several

Perspective view

Summarize situation eventually．．． To escape from local optimum．

Not to loose the way to go．
俯瞰的に考える
strengths to be proud of as a researcher

Collaboration through division of speciality／role in the collaboration．

To researchers:

To administrators:

To researchers：

Keep asking why even to textbooks（common sense）．．．I hope you aim for discoveries that change the world or demand a rewrite of the textbooks．

世の中を変える，あるいは教科書の書き换えを迫るような発見を目指して！

To administrators：

To researchers：

Keep asking why even to textbooks（common sense）．．．I hope you aim for discoveries that change the world or demand a rewrite of the textbooks．
世の中を変える, あるいは教科書の書き换えを迫るような発見を目指して!

Allocate time to ponder things and think holistically about how to approach and consider a problem，rather than constantly staying busy trying to solve the issue in front of you．
どう考えるべきかを沈思埝考する時间を取ることが大事!

To administrators：

To researchers：

Keep asking why even to textbooks（common sense）．．．I hope you aim for discoveries that change the world or demand a rewrite of the textbooks．
世の中を変える, あるいは教科書の書き换えを迫るような発見を目指して!

Allocate time to ponder things and think holistically about how to approach and consider a problem，rather than constantly staying busy trying to solve the issue in front of you．
どう考えるべきかを沈思默考する時间を取ることが大事!

Receiving critical reviews or opinions about your scientific achievements can be disheartening，but you can use them as a valuable teacher or source to identify even more challenging and／or essential problems to solve．

批判をも味方に，常に新たなことにチャレンジして！

To administrators：

To researchers：

Keep asking why even to textbooks（common sense）．．．I hope you aim for discoveries that change the world or demand a rewrite of the textbooks．
世の中を変える, あるいは教科書の書き换えを迫るような発見を目指(て!

Allocate time to ponder things and think holistically about how to approach and consider a problem，rather than constantly staying busy trying to solve the issue in front of you．
どう考えるべきかを沈思默考する時间を取ることが大事!

Receiving critical reviews or opinions about your scientific achievements can be disheartening，but you can use them as a valuable teacher or source to identify even more challenging and／or essential problems to solve．

批判をも味方に，常に新たなことにチャレンジして！

To administrators：

Please prioritize securing research resources for researchers，including time for meditation，to maximize research outcomes，rather than strictly enforcing rules．

研究者が創造的であるためには常に忙しいことはNG

To researchers：

Keep asking why even to textbooks（common sense）．．．I hope you aim for discoveries that change the world or demand a rewrite of the textbooks．
世の中を要える, あるいは教科書の書き换えを迫るような発見を目指(て!

Allocate time to ponder things and think holistically about how to approach and consider a problem，rather than constantly staying busy trying to solve the issue in front of you．
どう考えるべきかを沈思默考する時间を取ることが大事!

Receiving critical reviews or opinions about your scientific achievements can be disheartening，but you can use them as a valuable teacher or source to identify even more challenging and／or essential problems to solve．

批判をも味方に，常に新たなことにチャレンジして！

To administrators：

Please prioritize securing research resources for researchers，including time for meditation，to maximize research outcomes，rather than strictly enforcing rules．
研究者が創造的であるためには常に忙しいことはNG

Please streamline lengthy documents and rulebooks，and explain the reason why these policies and regulations are essential by using the 5W1H method． Otherwise it won＇t be respected so efficiently．
所の政策や規定は出来るだけ省略•简潔化 (5W1H)。「何故不可避か」の説明

闲話休題：今少しの脱缐…
Let me digress more in the context of scientific mistake and misconduct

研究上の间違い
研究不正

What everyone knows ．．

Scientific misconduct never pay off ！！

研究不正は割に含わない

The motivation for misconduct is the desire to be recognized as a researcher for significant scientific contributions．

Significant academic achievements will extensively be verified／examined． Result of misconduct will never be verified，though．．．
承認欲求•不可避な検証•不正の露見

What everyone knows ．．．

Scientific misconduct never pay off ！！

研究不正は割に含わない
The motivation for misconduct is the desire to be recognized as a researcher for significant scientific contributions．

Significant academic achievements will extensively be verified／examined．
Result of misconduct will never be verified，though．．．
承認欲求•不可避な検証•不正の露見

Why can＇t research misconduct be completely eradicated？
People could consider even a short－lived glory to be glory．
Without outstanding achievements，fixed－term researchers can＇t secure their next position．－This fact also makes it difficult to eradicate research misconduct．

$$
\begin{gathered}
\text { 三曰天下でも天下は天下? けど, 三曰天下の先は奈落… } \\
\text { 過度な成果創出ストレスも不正誘引事象 (五神理事長の立導で缓䄧) }
\end{gathered}
$$

To researchers:

To administrators:

To researchers：

No matter how challenging，one should take essential efforts with a holistic perspective； otherwise，you may wandering around local（or selfish）optimum．

例え困難だろうと，俯瞰的視野を持ち「本質的取り组みは何か」を常に意識

To administrators：

To researchers：

No matter how challenging，one should take essential efforts with a holistic perspective； otherwise，you may wandering around local（or selfish）optimum．

例え困難だろうと，俯瞰的視野を持ち「本質的取り组みは何か」を常に意識
Don＇t isolate yourself．Instead，find someone you trust．Who will help you to resist any temptation to misbehave．Moreover，they can boost your research．
表面的に取り繕うのではなく, 本音をぶつけ含える仲间を!

To administrators：

To researchers：

No matter how challenging，one should take essential efforts with a holistic perspective； otherwise，you may wandering around local（or selfish）optimum．

```
例え困難だろうと, 俯橄的視野を持ち「本質的取り组みは何か」を常に意識
```

Don＇t isolate yourself．Instead，find someone you trust．Who will help you to resist any temptation to misbehave．Moreover，they can boost your research．
表面的に取り鳝うのではなく, 本音をぶつけ合える仲间を!

To administrators：

Excessive ethics simply waste valuable research time for sincere researchers． Ethics are of no help to the fundamental solution，as all the people already understand that misconduct is unacceptable．

To researchers：

No matter how challenging，one should take essential efforts with a holistic perspective； otherwise，you may wandering around local（or selfish）optimum．

```
例え困難だろうと, 俯瞰的視野を持ち 「本質的取り组みは何か」を常に意識
```

Don＇t isolate yourself．Instead，find someone you trust．Who will help you to resist any temptation to misbehave．Moreover，they can boost your research．
表面的に取り繕うのではなく, 本音をぶつけ含える仲间を!

To administrators：

Excessive ethics simply waste valuable research time for sincere researchers． Ethics are of no help to the fundamental solution，as all the people already understand that misconduct is unacceptable．

研究倫理教育拡充は本質的には愚策
Communication between research labs（or organizations）and creating an open minded atmosphere where people freely express their opinions are essential for preventing misconduct－expanding projects that involve multiple research labs， such as exploring new research areas，is important for this purpose．
本音をぶつけ含える環境を！！矯正より荓放的環境•新領域闰拓課題の拡充等が有益

A Typical Experimental Research Cycle

Objective： Unsolved Problem Why and How？

Ansatz Assumption Methodology

－Must be corrected，and open that to public．
mistake／hidden bias in the analysis－To encourage ambitious research， failure must be embraced．
完全にミスを防でことは不可能。间建いは訪容されるべき
pretend to be positive－unacceptable scientific misconduct

A Typical Experimental Research Cycle

Objective： Unsolved Problem Why and How？

Ansatz Assumption Methodology

Terminate Project and Identify problems in previous methodology

Back to the kaonic nuclear search

How to discriminate K－nucl．formation
signal out from severe backgrounds？

How to breakthrough the experimental difficulty？

K中间子原子核探査で如何に革新的成果を導くか?
完全実験を目指そう!
闲話休題: 今一度どう取り组むべきか根本的に考える…
＂The opposite of success is not failure．It＇s not trying．＂
－Attributed to F．C．Farmer，sometime mistakenly attributed to T．Edison． ＂Failure happens when you stop challenge．If you keep going until succeed，that＇s success．＂
－Attributed to K．Matsushita，probably inspired by words of T．Edison． Further challenges based on deeper insights on what we shall do for ideal experiment！

Complicated dynamics Insufficient information

Simplify formation channel：$K^{-} N \rightarrow \bar{K} N^{\prime}$
Specify decay channel： $\bar{K} N N \rightarrow \Lambda p$
Study on multi－dimensional kinematics：$\left(m_{\Lambda p}, q_{\Lambda p}\right)$
．．．improve information in ideal manner

Introduced by T．Kishimoto 1999

Why don＇t we knockout nucleon by kaon so as to form anti－kaon close to at－rest near residual nuclei？

KEK－PS E548 led by T．Kishimoto：observe forward going nucleon produced by $K^{-} N \rightarrow \bar{K} N^{\prime}$ reaction on carbon target．（missing mass spectroscopy）

The result suggests kaonic nuclear bound state formation，but the signal is not distinct to be identified as a peak大変魅力的だけど全体的になだらか で確信には遠い
どうすれば良い?

バックグランド除去可能な少数系•完全実験を目指そう！！
binding threshold

binding threshold

J－PARC E15：＂K’pp＂Exploration

$\mathrm{K}^{-}+{ }^{3} \mathrm{He}(\mathrm{ppn})$

knocking out n from ${ }^{3} \mathrm{He}$

$$
\left(K^{-}+p p\right)+n
$$

substitute n in ${ }^{3} \mathrm{He}$ by K^{-}
minimize number
of particles

J－PARC E15：＂K’pp＂Exploration

$\mathrm{K}^{-}+{ }^{3} \mathrm{He}(p p n)$

$\left(K^{-}+\mathrm{pp}\right)+\mathrm{n}$
substitute n in ${ }^{3} \mathrm{He}$ by K^{-}
minimize number
of particles

J－PARC E15：＂Kpp＂Exploration

$\mathrm{K}^{-}+{ }^{3} \mathrm{He}(\mathrm{ppn})$

	$\mathrm{K}^{-}+{ }^{3} \mathrm{He} \rightarrow\left(\mathrm{K}^{-}+\mathrm{pp}\right)+\mathrm{n}$	formatio
knocking out n from ${ }^{3} \mathrm{He}$ $\text { by } \mathrm{K}$		

substitute n in ${ }^{3} \mathrm{He}$ by K^{-} minimize number of particles

J－PARC E15：＂K’pp＂Exploration

If＂K－pp＂exits，a peak will be formed in invariant mass spectrum below $\mathrm{M}\left(\mathrm{K}^{-} \mathrm{pp}\right)$

$$
M\left(K^{-} p p\right) \equiv m_{K^{-}}+2 m_{p}
$$

$\mathrm{K}^{-}+{ }^{3} \mathrm{He} \rightarrow\left(\mathrm{K}^{-}+\mathrm{pp}\right)+\mathrm{n} \quad:$ formation
substitute n in ${ }^{3} \mathrm{He}$ by K^{-} minimize number of particles

J－PARC E15：＂K’pp＂Exploration

If＂K－pp＂exits，a peak will be formed in invariant mass spectrum below $\mathrm{M}\left(\mathrm{K}^{-} \mathrm{pp}\right)$

$$
M\left(K^{-} p p\right) \equiv m_{K^{-}}+2 m_{p}
$$

$$
\begin{array}{rll}
\mathrm{K}^{-}+{ }^{3} \mathrm{He} \rightarrow & \left(\mathrm{~K}^{-}+\mathrm{pp}\right)+\mathrm{n} & : \text { formation } \\
& \left(\mathrm{K}^{-}+\mathrm{pp}\right) \rightarrow \Lambda+\mathrm{p}: & : \operatorname{decay}(\boldsymbol{M}, q)
\end{array}
$$

substitute n in ${ }^{3} \mathrm{He}$ by K^{-} minimize number of particles

J－PARC E15：＂Kpp＂Exploration

反忘生成粒子の数を減ら（ 7，生成と崩壊の両チャネルから反忘力学を多次元的かつ詳细に観測！

knocking out n from ${ }^{3} \mathrm{He}$
by K^{-}

$$
\left(K^{-}+p p\right)+n
$$

substitute n in ${ }^{3} \mathrm{He}$ by K^{-} minimize number of particles

If＂K＇pp＂exits，a peak will be formed in invariant mass spectrum below $\mathrm{M}\left(\mathrm{K}^{-} \mathrm{pp}\right)$

$$
M\left(K^{-} p p\right) \equiv m_{K^{-}}+2 m_{p}
$$

kinematically identified

$$
\begin{aligned}
\mathrm{K}^{-}+3 \mathrm{He} \rightarrow & \left(\mathrm{~K}^{-}+\mathrm{pp}\right)+(\mathrm{n}: \text { formation } \\
& \left.\left(\mathrm{K}^{-}+\rho p\right) \rightarrow \Lambda+\rho\right): \operatorname{decay}(M, q)
\end{aligned}
$$

identified as charged particles
select $\mathrm{K}^{-}+{ }^{3} \mathrm{He} \rightarrow(\Lambda+\mathrm{p})+\mathrm{n}$ events， analyze invariant mass M ）of（ $\mathrm{K}^{-}+\mathrm{pp}$ ）－system and momentum transfer 9 to the system

Experimental Setup for E15

K．Agari et．al．，PTEP 2012，02B011

${ }^{3} \mathrm{He}\left(\mathbf{K}^{\prime}, \mathbf{n}_{\mathrm{Nc}}\right) \mathbf{X}$－missing mass study

$K^{-}+{ }^{3} \mathrm{He} \rightarrow(\bar{K}+N N)+n^{\prime}$

K中間子が前方に核子を蹴り出すこと で，反跳くが違くなり，容易に残核と K束缚状態を作ることが期待される

${ }^{3} \mathrm{He}\left(\mathbf{K}^{\prime}, \mathbf{n}_{\mathrm{Nc}}\right) \mathbf{X}$－missing mass study

$K^{-}+{ }^{3} \mathrm{He} \rightarrow(\bar{K}+N N)+n^{\prime}$

K中间子が前方に核子を蹴り出すこと で，反跳くが違くなり，容易に残核と K束缚状態を作ることが期待される

Dominance of nucleon knockout reaction，$K^{-} N \rightarrow \bar{K} n^{\prime}$ ，is confirmed as a doorway

${ }^{3} \mathrm{He}\left(\mathrm{K}^{\prime}, \mathbf{n}_{\mathrm{Nc}}\right) \mathbf{X}$－missing mass study

$K^{-}+{ }^{3} \mathrm{He} \rightarrow(\bar{K}+N N)+n^{\prime}$

想定通りKN交换反忘が主要成分： K中间子が前方に核子を䟽り出すこと で，反跳くが遅くなり，容易に残核と K束缚状態を作ることが期待される

Dominance of nucleon knockout reaction，$K^{-} N \rightarrow \bar{K} n^{\prime}$ ，is confirmed as a doorway

${ }^{3} \mathrm{He}\left(\mathrm{K}^{\prime}, \mathbf{n}_{\mathrm{Nc}}\right) \mathbf{X}-$ missing mass study

$K^{-}+{ }^{3} \mathrm{He} \rightarrow(\bar{K}+N N)+n^{\prime}$
想定通りKN交换反忘が主要成分： K中间子が前方に核子を䟽り出すこと で，反跳くが遅くなり，容易に残核と K束缚状態を作ることが期待される
binding threshold

missing mass spectroscopy is insufficient to isolate K－pp signal from QF－K leakage

$$
\begin{gathered}
\text { 生成チャネルの解析 (missing } \\
\text { mass)だけでは不十分 }
\end{gathered}
$$

Dominance of nucleon knockout reaction，$K^{-} N \rightarrow \bar{K} n^{\prime}$ ，is confirmed as a doorway

${ }^{3} \mathrm{He}\left(\mathrm{K}^{\prime}, \mathbf{n}_{\mathrm{Nc}}\right) \mathbf{X}-$ missing mass study

$K^{-}+{ }^{3} \mathrm{He} \rightarrow(\bar{K}+N N)+n^{\prime}$
想定通りKN交換反忘が主要成分： K中间子が前方に核子を蹴り出すこと で，反跳くが違くなり，容易に残核と K束縛状態を作ることが期待される
binding threshold

missing mass spectroscopy is insufficient to isolate K－pp signal from QF－K leakage

> 生成チャネルの解析 (missingmass) だけでは不十分

How to study the excess？
The ideal decay channel is：

$$
\bar{K}+N N \rightarrow \Lambda p
$$

Because it is the most simple reaction easy to analyze
崩壊チャネルの解析（invariant mass）～

Dominance of nucleon knockout reaction，$K^{-} N \rightarrow \bar{K} n^{\prime}$ ，is confirmed as a doorway

$\Lambda p+n$ events

へp不变質量解析が示したもの Acceptance corrected event distribution on（M，q）
q－distribution：system size
－sticking probability：high－q capture happens if the system is compact－

$\Delta p+n$ events
へp不要質量解析が示したもの Acceptance corrected event distribution on（M，q）

$\Lambda p+n$ events
へp不要質量解析が示したもの Acceptance corrected event distribution on（M，q）

events
へp 不要質量解析が示したもの Acceptance corrected event distribution on（M，q） reconstructed＂ $\bar{K} N N$＂mass（ M ）－

on（M，q）－plane

q－distribution：system size
－sticking probability：high－q capture happens if the system is compact－
M－distribution：binding energy \＆absorption width －both information gives $\bar{K} N$ interaction strength－

The K－pp signal is clearly seen on（ M, q ）－plane！ －relatively deep and wide，and extended to high－q region－

M \＆q defines kinematics

（or $\boldsymbol{M} \& \boldsymbol{\theta}_{\boldsymbol{n}}$ ）運動量䎦行 a と 反跳角度 θ の闺综

$$
\begin{aligned}
\mathbf{K}^{-}+{ }^{3} \mathbf{H e} \rightarrow \mathbf{k}^{\mathbf{6}} \mathbf{K} \mathbf{p} \mathbf{\prime \prime} \mathbf{+} \mathbf{n} \\
\left(\begin{array}{c}
\sqrt{m_{K}^{2}+p_{K}^{2}} \\
p_{K} \\
0
\end{array}\right)+\left(\begin{array}{c}
M_{3} \mathrm{He} \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
\sqrt{M^{2}+q^{2}} \\
q \cos \theta \\
q \sin \theta
\end{array}\right)+\left(\begin{array}{c}
\sqrt{m_{n}^{2}+p_{K}^{2}-2 p_{K} q \cos \theta+q^{2}} \\
p_{K}-q \cos \theta \\
-q \sin \theta
\end{array}\right)
\end{aligned}
$$

$\Lambda p+n_{\text {miss }}$

model fitting function in（ m, q ）－plane

ρ ：Lorentz－invariant phase－space

$$
f_{\bar{K} N N}(m, q) \times \rho_{\{\Lambda p n\}}(m, q) \quad f_{Q F-\bar{K}}(m, q) \times \rho_{\{\Lambda p n\}}(m, q)
$$

$$
f_{\bar{K} N N}(m, q): \begin{gathered}
\text { B.W. }(m) \times
\end{gathered} \begin{gathered}
f_{Q F-\bar{K}}(m, q): \text { quasi-free } \\
\text { form factor }(q)
\end{gathered} \begin{gathered}
\text { on mass-shell) } \text { K abs. }
\end{gathered}
$$

Ap $+n_{\text {mis．}}$ VS．theory

Structure in E151st can be explained with quasi－ free K absorption（QF－̄̄A）\＆Kpp © $x-U M$ ？

Sekihara Oset Ramos
PTEP
Prog．Theor．Exp．Phys．2016，123D03（27 pages） DOI： $10.1093 /$ ptep／ptw166

On the structure observed in the in－flight ${ }^{3} \mathrm{He}\left(K^{-}, \Lambda p\right) n$ reaction at J－PARC

Takayasu Sekihara ${ }^{1, *}$ ，Eulogio Oset 2 ，and Angels Ramos ${ }^{3}$
Advanced Science Research Center，Japan Atomic Energy Agency，Shirakata，Tokai， Ibaraki 319－1195，Japan
Departamento de Fisica Teórica and IFIC，Centro Mixto Universidad de Valencia－CSIC，
 Departament de Fisica Quàntica i Astrofisica and Institut de Ciències del Cosmos，
E－mail：sekihara＠post．j－parc．jp

QFĒA

PWIA based interpretation

B．W．／Lorentzian
（plane wave impulse approximation）

form factor／structure factor

$\exp \left(--\frac{q^{2}}{Q^{2}}\right)$ Fourier Transformation of s－ wave Harmonic Oscillator（HO） －from spatial integral－

strong binding（ $\overline{\mathrm{K}} \mathrm{N}$ attraction）

Momentum Transfer Spectrum
could be quite compact ．．．

$$
\left(R_{k p p} \sim 0.6 \mathrm{fm}(H . O .)\right) \text { コンパクト? }
$$

E15 result

Succeeded in Observing First Clear＂K－pp＂Signal

Strong binding（ $\overline{\mathrm{K}} \mathrm{N}$ attraction）
Large width（very unstable）
Large Q（could be very compact）

从吓间子核探査研究の最近のレビュー

The detail can be found：

－in a review－
$\bar{K} N$ interaction study via kaonic atom
Search for $\bar{K} N N$ nuclear bound state as a natural extension of $\Lambda(1405) \equiv \bar{K} N$

Recent results on \bar{K} bound state
Future direction of $\bar{K}(\phi)$ bound state study

Kaonic Nuclei from the

Experimental Viewpoint

Research on kaonic nuclear bound states is a completely new field．This nuclear system consists of

補足：PWIAでの形状（構造）因子計算 $\overline{\mathbf{K}} \mathbf{N} \rightarrow \mathbf{Y}^{\star}(\mathbf{1 7 0 0}) \rightarrow \overline{\mathbf{K}} \mathbf{N} \quad f\left(\mathbf{p}_{\mathbf{K}}, \mathbf{p}_{\mathbf{n}}\right) \propto\langle f| V|i\rangle+\langle f| V \frac{1}{E-H_{0}+i \epsilon} V|i\rangle+\ldots$

$\bar{K} N_{s} N_{s} \rightarrow$＂K－pp＂S－wave resonance？

$f_{0}\left(\mathbf{p}_{\mathbf{K}}, \mathbf{p}_{\mathbf{n}}\right) \propto\left\langle\exp \left(-i \frac{\mathbf{p}_{\mathbf{n}} \cdot \mathbf{x}^{\prime}}{\hbar}\right) \exp \left(-\frac{\mathbf{x}^{\prime 2}}{2 R_{\mathrm{Kpp}}{ }^{2}}\right)\right| V\left|\exp \left(i \frac{\mathbf{p}_{\mathbf{K}} \cdot \mathbf{x}}{\hbar}\right) \exp \left(-\frac{\mathbf{x}^{2}}{2 R_{\mathrm{He}}{ }^{2}}\right)\right\rangle$

$$
\frac{V_{0}}{4 \pi} \delta\left(\mathbf{x}^{\prime}-\mathbf{x}\right) \quad \text { PWIA }
$$

$\propto \frac{V_{0}}{4 \pi} \int d^{3} x \exp \left(-i \frac{\left(\mathbf{p}_{\mathbf{K}}-\mathbf{p}_{\mathbf{n}}\right) \cdot \mathbf{x}}{\hbar}\right) \exp \left(-\left(\frac{1}{R_{\mathrm{Kpp}^{2}}{ }^{2}}+\frac{1}{R_{\mathrm{He}}{ }^{2}}\right) \frac{\mathbf{x}^{2}}{2}\right)$
$\boldsymbol{I}=\frac{V_{0}}{4 \pi} \int d^{3} x \exp (i \mathbf{k} \cdot \mathbf{x}) \exp \left(-\frac{\mathbf{x}^{2}}{2 R^{2}}\right), \quad R=R_{\mathrm{Kpp}}\left(1+\left(\frac{R_{\mathrm{Kpp}}}{R_{\mathrm{He}}}\right)^{2}\right)^{-1 / 2}$
$=\sqrt{\frac{\pi}{2}} V_{0} R^{3} \exp \left(-\frac{R^{2} k^{2}}{2}\right)$
運動量の広がりはサイズの逆数

$$
\frac{d \sigma_{0}}{d \Omega} \propto\left|f_{0}(q)\right|^{2} \propto \exp \left(-\frac{R^{2} q^{2}}{\hbar^{2}}\right)=\exp \left(-\frac{q^{2}}{Q^{2}}\right), \quad Q=\frac{\hbar}{R}
$$

历中间子放出を伴う崩壊チャネル分岐比は?

Mesonic decay branch of $\bar{K} N N$ ？

$$
\begin{aligned}
& \text { 核子密度の又秉に比例? Vs. 核子密度の工秉に比例? } \\
& \text { for example: } \\
& \mathrm{K}^{-}+{ }^{3} \mathrm{He} \rightarrow\left(\mathrm{~K}^{-}+\mathrm{pp}\right)+\mathrm{n} \\
& \left(K^{-}+\mathrm{pp}\right) \rightarrow \Lambda+p \\
& \text { vs. } \quad \mathrm{K}^{-}+{ }^{3} \mathrm{He} \rightarrow\left(\left(\mathrm{~K}^{-}+\mathrm{n}\right) \mathrm{p}\right)+\mathrm{p} \\
& \left(\left(\pi^{-} \Lambda\right)+p\right) \rightarrow \pi^{-} \Lambda+p
\end{aligned}
$$

－will be sensitive to the internal structure（compactness）of $\bar{K} N N$ ．
－will be sensitive to the isospin partner of $\bar{K} N N$ ．

$$
\left(\left(\mathrm{K}^{-}+\mathrm{n}\right) \mathrm{p}\right) \equiv\left(\overline{\mathrm{K}}^{0}+\mathrm{nn}\right)
$$

$\bar{K} N N$ isospin partner： $\mathrm{K}^{-} \mathrm{pp} \leadsto \overline{\mathrm{K}}^{0} \mathrm{nn}$ —鏡像核の存在は必須！ ．．．done by T．Yamaga ${ }_{45}$

$\mathrm{K}^{-}+{ }^{3} \mathrm{He} \rightarrow \pi^{-} \wedge \mathrm{App}$ reaction

$\mathrm{K}^{-}+{ }^{3} \mathrm{He} \rightarrow \pi^{-} \Lambda p p$ reaction

$\mathrm{K}^{-}+{ }^{3} \mathrm{He} \rightarrow \pi^{-} \Lambda p p$ reaction

$K-{ }^{3} \mathrm{He} \rightarrow \pi-\Lambda p p$ reaction

consistent with $\mathrm{K}+{ }^{3} \mathrm{He} \rightarrow \Lambda$ pn reaction branch seems to be oder bigger
... excess is not easy to see ...
Let's normalize event density by 4-body phase space

The normalization by 4-body phase space, i.e., final-statedensity

$$
\begin{aligned}
& \rho_{\left(\pi^{-} \Lambda p p^{\prime}\right)}=\frac{d^{2} N_{\left(\pi^{-} \Lambda p p^{\prime}\right)}}{d m_{\left\{\pi^{-} \Lambda p\right\}} d m_{\left\{\pi^{-} \Lambda\right\}}} \\
& \propto p_{p^{\prime}} \times p_{p}^{*} \times p_{\Lambda}^{*}
\end{aligned}
$$

excess!
consistent with $\mathrm{K}-+{ }^{3} \mathrm{He} \rightarrow \Lambda$ pn reaction branch seems to be oder bigger
... excess is not easy to see ...
Let's normalize event density by 4-body phase space

The normalization by 4-body phase space, i.e., final-statedensity

$$
\begin{aligned}
& \rho_{\left(\pi^{-} \Lambda p p^{\prime}\right)}=\frac{d^{2} N_{\left(\pi^{-} \Lambda p p^{\prime}\right)}}{d m_{\left\{\pi^{-} \Lambda p\right\}} d m_{\left\{\pi^{-} \Lambda\right\}}} \\
& \propto p_{p^{\prime}} \times p_{p}^{*} \times p_{\Lambda}^{*}
\end{aligned}
$$

excess!
consistent with $\mathrm{K}-+{ }^{3} \mathrm{He} \rightarrow \Lambda \mathrm{pn}$ reaction branch seems to be oder bigger
... excess is not easy to see ...
Let's normalize event density by 4-body phase space

The normalization by 4-body phase space, i.e., final-statedensity

$$
\begin{aligned}
& \rho_{\left(\pi^{-} \Lambda p p^{\prime}\right)}=\frac{d^{2} N_{\left(\pi^{-} \Lambda p p^{\prime}\right)}}{d m_{\left\{\pi^{-} \Lambda p\right\}} d m_{\left\{\pi^{-} \Lambda\right\}}} \\
& \propto p_{p^{\prime}} \times p_{p}^{*} \times p_{\Lambda}^{*}
\end{aligned}
$$

... analyzed by T. Yamaga

excess!
consistent with $\mathrm{K}-+{ }^{3} \mathrm{He} \rightarrow \Lambda$ pn reaction branch seems to be oder bigger
... excess is not easy to see ...
Let's normalize event density by 4-body phase space

The normalization by 4-body phase space, i.e., final-statedensity

$$
\begin{aligned}
& \rho_{\left(\pi^{-} \Lambda p p^{\prime}\right)}=\frac{d^{2} N_{\left(\pi^{-} \Lambda p p^{\prime}\right)}}{d m_{\left\{\pi^{-} \Lambda p\right\}} d m_{\left\{\pi^{-} \Lambda\right\}}} \\
& \propto p_{p^{\prime}} \times p_{p}^{*} \times p_{\Lambda}^{*}
\end{aligned}
$$

 π
... analyzed by T. Yamaga

$\mathrm{K}^{-}+{ }^{3} \mathrm{He} \rightarrow \pi^{-} \Lambda$ pp reaction

excess!
consistent with $\mathrm{K}-+{ }^{3} \mathrm{He} \rightarrow \Lambda$ pn reaction branch seems to be oder bigger
... excess is not easy to see ...
Let's normalize event density by 4-body phase space

The normalization by 4-body

$$
\begin{gathered}
\text { phase space, i.e., final-state- } \\
\text { density }
\end{gathered} \rho_{\left(\pi^{-} \Lambda p p^{\prime}\right)}=\frac{d^{2} N_{\left(\pi^{-} \Lambda p p^{\prime}\right)}}{d m_{\left\{\pi^{-} \Lambda p\right\}} d m_{\left\{\pi^{-} \Lambda\right\}}}
$$

$d^{2} \sigma / d m d q\left(\mathrm{nb} /\left(\mathrm{MeV}^{2} / c^{3}\right)\right)$

[^0]

E

$\mathrm{K}^{-}+{ }^{3} \mathrm{He} \rightarrow \pi^{-} \Lambda$ pp reaction

excess!
consistent with $\mathrm{K}-+{ }^{3} \mathrm{He} \rightarrow \Lambda \mathrm{pn}$ reaction branch seems to be oder bigger
... excess is not easy to see ...
Let's normalize event density by 4-body phase space

The normalization by 4-body phase space, i.e., final-statedensity

$$
\begin{aligned}
\rho_{\left(\pi^{-} \Lambda p p^{\prime}\right)} & =\frac{d^{2} N_{\left(\pi^{-} \Lambda p p^{\prime}\right)}}{d m_{\left\{\pi^{-} \Lambda p\right\}} d m_{\left\{\pi^{-} \Lambda\right\}}} \\
\propto & \propto p_{p^{\prime}} \times p_{p}^{*} \times p_{\Lambda}^{*}
\end{aligned}
$$

$d^{2} \sigma / d m d q\left(\mathrm{nb} /\left(\mathrm{MeV}^{2} / c^{3}\right)\right)$

存在？

存在？

Further analysis on other data

$$
\begin{aligned}
& \text { もっと重いK中间子原子核はないのか? } \\
& \text { Signal of } \bar{K} N N N ?
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\text { 系统的研究への第一步 } \\
\mathrm{K}^{-}+{ }^{3} \mathrm{He} \rightarrow \underset{ }{\left(\mathrm{~K}^{-}+\mathrm{pp}\right)+\mathrm{n}} \\
& \left(\mathrm{~K}^{-}+\mathrm{pp}\right) \rightarrow \Lambda+\mathrm{p}
\end{array}\right) \quad \begin{aligned}
& \mathrm{K}^{-}+{ }^{4} \mathrm{He} \rightarrow \underset{\left(\mathrm{~K}^{-}+\mathrm{ppn}\right)+\mathrm{n}}{\left(\mathrm{~K}^{-}+\mathrm{ppn}\right) \rightarrow \Lambda+d}
\end{aligned}
$$

Preliminary data analysis for $\bar{K} N N N$ formation study utilizing ${ }_{\Lambda}^{4} \mathrm{He}$ lifetime measurement via $K^{-}+{ }^{4} \mathrm{He} \rightarrow \pi^{0}+{ }_{\Lambda}^{4} \mathrm{He}$ reaction giving us a very interesting result

Λp on ${ }^{3} \mathrm{He}$ target

＾d on ${ }^{4} \mathrm{He}$ target

Λp on ${ }^{3} \mathrm{He}$ target

$\Lambda \mathrm{d}$ on ${ }^{4} \mathrm{He}$ target

Λp on ${ }^{3} \mathrm{He}$ target

$\Lambda \mathrm{d}$ on ${ }^{4} \mathrm{He}$ target

－Two distributions are quite similar
－structure below the threshold，QF－K，and broad background

＾d decay

Promising signal observed similar to $\bar{K} N N \rightarrow \Lambda p$
3核子状態の存在？

＾d decay

Promising signal observed similar to $\bar{K} N N \rightarrow \Lambda p$
3核子状態の存在？

＾d decay－ $\bar{K} N N N$ spin－parity is FIXED to be $I\left(J^{P}\right)=0\left(\frac{1^{-}}{2}\right)$ ． Promising signal observed similar to $\bar{K} N N \rightarrow \Lambda p$

1）Λd decay requires isospin $I_{\bar{K} N N N}=0 \quad 3$ 核子状態の存在？

2）NNN must be either（ $p p$ ）n or $p(n n)$ ，thus the nucleons， symmetry requires $J_{N N N}=1 / 2$ and $J_{\bar{K} N N N}=1 / 2$
3） \bar{K}（pseudo－scaler）presence requires negative parity (P)

What we learned for kaonic nuclear bound state:

- $\bar{K} N N\left(I\left(J^{P}\right)=\frac{1}{2}\left(0^{-}\right.\right.$or $\left.\left.1^{-} ?\right)\right)$ identified in $\bar{K} N N \rightarrow \underset{\text { Phys. Lett. B789, } 620}{ }$
" $K^{-} p{ }^{\prime \prime} \rightarrow \Lambda p$ decay requires
the isospin to be $I_{\bar{K} N N}=1 / 2$.
Phys. Lett. B789, 620-625 (2019)
Phys. Rev. C102, 044002 (2020)
- $\bar{K} N N \rightarrow \pi Y p$ decay dominance $B r_{\pi Y p}>10 \times B r_{\Lambda p}$
- $\bar{K} N N$ isospin partner could be identified in $\pi^{-} \Lambda p$ decay $\begin{gathered}\text { twice more data } \\ \text { vvailable in April }\end{gathered}$
$\bar{K} N$ interaction is also strong in $I_{\bar{K} N}=1$, at least for absorption
Will be published soon... T. Yamaga

Preliminary analysis \rightarrow Three nucleon bound state! Higher statistics is needed to be conclusive.. T. Hashimoto

Basic understanding of nuclei

- Nuclei consist of nucleons bound by nuclear force

$$
\text { nucleons (} N \text {): }
$$

$q=u$ or d

Fermion:
Pauli exclusion
meson: $\bar{q} q$

Boson: particles can share a quantum state

Yukawa Theorem tells:

- in nuclei, mesons are virtual particles and form nuclear potential

$$
\phi \propto \frac{1}{r} \exp (-m r)
$$

Basic understanding of nuclei

－Nuclei consist of nucleons bound by nuclear force

$$
\text { nucleons (} N \text {): }
$$

$q=u$ or d

Fermion：
Pauli exclusion

$$
\phi \propto \frac{1}{r} \exp (-m r)
$$

－in vacuum，mesons are real particles having own intrinsic masses
Long standing question：
－Can meson form a quantum state as a particle？－従来の理解を超えて
meson： $\bar{q} q$

Boson： particles can share a quantum state

Yukawa Theorem tells：
－in nuclei，mesons are virtual particles and form nuclear potential

Can meson be a constituent particle forming nuclei？

Basic understanding of nuclei

－Nuclei consist of nucleons bound by nuclear force
nucleons（ N ）：
$q=u$ or d

Fermion：
Pauli exclusion
meson： $\bar{q} q$
Boson： particles can share a quantum state

$$
\phi \propto \frac{1}{r} \exp (-m r)
$$

－in vacuum，mesons are real particles having own intrinsic masses
Long standing question：
Can meson be a constituent particle forming nuclei？
－Can meson form a quantum state as a particle？－

．．．finally resolved as従来の理解を超えて
$\bar{K}(\bar{q} s)$ forms a bound state with two nucleons
\bar{K} meson（ $\mathrm{K}^{-}: \bar{u} s, \bar{K}^{o}: \bar{d} \mathrm{~s}$ ）

Basic understanding of nuclei

－Nuclei consist of nucleons bound by nuclear force
nucleons（ N ）：
$q=u$ or d

999
Fermion：
Pauli exclusion
meson： $\bar{q} q$
Boson： particles can share a quantum state

$$
\phi \propto \frac{1}{r} \exp (-m r)
$$

－in vacuum，mesons are real particles having own intrinsic masses
Long standing question：
Can meson be a constituent particle forming nuclei？
－Can meson form a quantum state as a particle？－

．．．finally resolved as従来の理解を超えて
$\bar{K}(\bar{q} s)$ forms a bound state with two nucleons
\bar{K} meson（ $\mathrm{K}^{-}: \bar{u} s, \bar{K}^{o}: \bar{d} \mathrm{~s}$ ） to study inside nuclei
－essential verification for transitioning from ＂observation＂to＂discovery＂－

Further Verification Study is Required

＂Charge Mirror State（isospin partner）exists？＂
＂What is the Quantum Number I（ \mathbf{J}^{P} ）of $\bar{K} N N$ ？＂
＂Is the system really compact？＂
＂Systematic study of Kaonic Nuclei in Heavier System？＂

$$
\begin{gathered}
\cdots \text { •・やることまだまだ山積み…次世代に期待… } \\
\cdots \text {... さな成果ほど, 嚴しい視缐 orz… }
\end{gathered}
$$

Toward next generation experiments！新型スベクトロメータ

Are kaonic nuclei really compact？

Isospin－partner＂ $\bar{K}^{0} n n$＂exist？
What is the spin－parity I（JP）？
Systematic study on

molecule－like hadronic nuclear cluster
＂Does it have a unique shape like a chemical molecule？＂

New spectrometer based on Grant－in－Aid（MEXT）
for Specially Promoted Research ．．．M．Iwasaki－2022－2026
for Scientific Research（S）．．．F．Sakuma－2024－2028
expecting collaborative inputs from international collaborators
．．．constructed－under F．Sakuma

How to study the size？

```
系のサイズ研究をどう進めるか?
```


Simple method for $\bar{K} N N$ ：

－Reaction Form（structure）－Factor
In PWIA，reaction dynamics is ignored， and simply applied delta function．

How to study the size？

```
系のサイズ研究をどう進めるか?
```

Simple method for $\bar{K} N N$ ：
－Reaction Form（structure）－Factor
In PWIA，reaction dynamics is ignored， and simply applied delta function．

Simple method for $\bar{K} N N N$ ：
－Dalitz－plot of $\Lambda p n$ three－body decay
P．Kienle，Y．Akaishi，T．Yamazaki：Phys．Lett．B 632 （2006） 187

How to study the size？

```
系のサイズ研究をどう進めるか?
```

Simple method for $\bar{K} N N$ ：
－Reaction Form（structure）－Factor
In PWIA，reaction dynamics is ignored， and simply applied delta function．

Simple method for $\bar{K} N N N$ ：

－Dalitz－plot of $\Lambda p n$ three－body decay
P．Kienle，Y．Akaishi，T．Yamazaki：Phys．Lett．B 632 （2006） 187

$$
R=\hbar / p_{F}
$$

If it decays in kaon－2NA process，$(\bar{K} N N) N \rightarrow(\Lambda N)+N_{F}$ ， then the N_{F} should have Fermi－momentum of the system．

How to study the size？

系のサイズ研究をどう進めるか？

Simple method for $\bar{K} N N$ ：

－Reaction Form（structure）－Factor
In PWIA，reaction dynamics is ignored， and simply applied delta function．
－Decay branching ratio：$\pi Y N / Y N$
How to derive the relation between the size and the ratio between mesonic／non－mesonic？

Simple method for $\bar{K} N N N$ ：

－Dalitz－plot of $\Lambda p n$ three－body decay

P．Kienle，Y．Akaishi，T．Yamazaki：Phys．Lett．B 632 （2006） 187

$$
R=\hbar / p_{F}
$$

If it decays in kaon－2NA process，$(\bar{K} N N) N \rightarrow(\Lambda N)+N_{F}$ ， then the N_{F} should have Fermi－momentum of the system．
－Decay branching ratio：$\Lambda p n / \Lambda d$
Does coalescence picture still hold to emit deuteron followed by the kaon 2NA？In the $(\bar{K} N N) N \rightarrow(\Lambda N)+N_{F}$ process，Λ and N are ejected back－to－back at $\sim 550 \mathrm{MeV} / \mathrm{c}$ ，while N_{F} is in Fermi－momentum．

It would be more easy to understand to form deuteron in 3NA with coalescence
$\bar{K} N N N \rightarrow(\Lambda N N) \rightarrow \Lambda+d$ or the system size is compatible as $R=\hbar / p_{F} \sim 0.4 \mathrm{fm}$ ？

How to study the size？

系のサイズ研究をどう進めるか？

Simple method for $\bar{K} N N$ ：

－Reaction Form（structure）－Factor
－Decay branching ratio：$\pi Y N / Y N$
In PWIA，reaction dynamics is ignored， and simply applied delta function．

How to derive the relation between the size and the ratio between mesonic／non－mesonic？
－Substantial theoretical progress is needed－

Simple method for $\bar{K} N N N$ ：

－Dalitz－plot of $\Lambda p n$ three－body decay
P．Kienle，Y．Akaishi，T．Yamazaki：Phys．Lett．B 632 （2006） 187

$$
R=\hbar / p_{F}
$$

If it decays in kaon－2NA process，$(\bar{K} N N) N \rightarrow(\Lambda N)+N_{F}$ ， then the N_{F} should have Fermi－momentum of the system．
－Decay branching ratio：$\Lambda p n / \Lambda d$
Does coalescence picture still hold to emit deuteron followed by the kaon 2NA？In the $(\bar{K} N N) N \rightarrow(\Lambda N)+N_{F}$ process，Λ and N are ejected back－to－back at $\sim 550 \mathrm{MeV} / \mathrm{c}$ ，while N_{F} is in Fermi－momentum．

It would be more easy to understand to form deuteron in 3NA with coalescence
$\bar{K} N N N \rightarrow(\Lambda N N) \rightarrow \Lambda+d$ or the system size is compatible as $R=\hbar / p_{F} \sim 0.4 \mathrm{fm}$ ？

Spin－Parity I（JP）Assignment for $\bar{K} N N$
…量子状態の性質を決める最も基本的な量子数…
$\cdots I_{\bar{K} N}=0$ チャネルが引力的なので，ほぼ间違いなく $I\left(J^{P}\right)=1 / 2\left(0^{-}\right)$
であうう。ただし，本質的な理解のために実験的に決めることが重
要。しかし，その決定は極めて困難…

Two possible internal structures：I（JP）？

$\bar{K} N N: I=1 / 2, J P=0: I_{N N}=1, S_{N N}=0, L_{\bar{K}}=0$
NN （isospin）symmetric（ $\mathrm{I}_{\mathrm{NN}}=1$ ）and spin anti－symmetric（ $\mathrm{S}_{\mathrm{NN}}=0$ ）
$\bar{K} N N: I=1 / 2, J P=1: I_{\mathrm{NN}}=0, S_{\mathrm{NN}}=1, \mathrm{~L}_{\mathrm{K}}=0$
NN（isospin）anti－symmetric（ $I_{\mathrm{NN}}=0$ ）and spin symmetric（ $\mathrm{S}_{\mathrm{NN}}=1$ ）
What is clear：
＂$K^{-} p p$＂$\rightarrow \Lambda p$ decay requires the isospin to be $I_{\bar{K} N N}=1 / 2$ ．

Presence of kaon requires negative parity for $\bar{K} N N$ ，while both Λ and p are positive．

Thus， $\mathrm{JP}^{\mathrm{P}}=\mathrm{O}^{-}$or $\mathrm{1}^{-}$

In the Λp decay：
The decay must be in P_{-} wave due to the negative parity．

$I(\bar{K} N N) / J^{P}(\overline{\bar{K}} N N)$	（1／2）／（ 0^{-}）	（1／2）／（ 1^{-}）
NN symmetry	$I(N N)=1, S(N N)=0$	$I(N N)=0, S(N N)=1$
$\begin{aligned} & " K^{-} p p " \\ & I_{3}(\bar{K} N N)=+\frac{1}{2} \end{aligned}$		
	$-\sqrt{\frac{1}{3}}\left(\sqrt{2} K^{-} p p+\bar{K}^{\prime} \frac{p n+n p}{\sqrt{2}}\right) \otimes\left(\frac{\uparrow \downarrow-\downarrow \uparrow}{\sqrt{2}}\right)$	$\bar{K}^{0} \frac{(p n-n p)}{\sqrt{2}} \otimes\left(\Uparrow, \frac{\uparrow \downarrow+\downarrow}{\sqrt{2}}, \Downarrow\right)$
$\begin{aligned} & " \bar{K}^{0} n n " \\ & I_{3}(\bar{K} N N)=-\frac{1}{2} \end{aligned}$		$s \underset{p-q_{n}}{ }=p$
	$-\sqrt{\frac{1}{3}}\left(\sqrt{2} \bar{K}^{0} n n+K^{-} \frac{p n+n p}{\sqrt{2}}\right) \otimes\left(\frac{\uparrow \downarrow-\downarrow \uparrow}{\sqrt{2}}\right)$	$-K^{-} \frac{(p n-n p)}{\sqrt{2}} \otimes\left(\Uparrow, \frac{\uparrow+\downarrow \uparrow}{\sqrt{2}}, \psi\right)$
$\bar{K} N$ coupling	$\frac{\left\|I_{\bar{K} N}=0\right\|^{2}}{\left\|I_{\bar{K} N}=1\right\|^{2}}=\frac{3}{1}$	$\frac{\left\|I_{\bar{K} N}=0\right\|^{2}}{\left\|I_{\bar{K} N}=1\right\|^{2}}=\frac{1}{3}$
$\frac{\sigma_{\bar{K}^{0} n n}}{\sigma_{K^{-}} p p}$	$0.13 \sim 0.15$	~ 0.75

Two possible internal structures： $\mathrm{I}(\mathrm{JP})$ ？

スピンパリティ状態の2つの可能性
$\overline{\mathbf{K}} \mathbf{N N}: \operatorname{I}=\mathbf{1 / 2}, \mathbf{J P}=0: \mathrm{I}_{\mathrm{NN}}=\mathbf{1}, \mathrm{S}_{\mathrm{NN}}=0, \mathrm{~L}_{\bar{K}}=0$－most likely this is the case，due to stronger $I_{\bar{K} N}=0$
NN （isospin）symmetric（ $\mathrm{I}_{\mathrm{NN}}=1$ ）and spin anti－symmetric（ $\mathrm{S}_{\mathrm{NN}}=0$ ）
$\bar{K} N N: I=1 / 2, J P=1: I_{N N}=0, S_{N N}=1, L_{\bar{K}}=0$
NN（isospin）anti－symmetric（ $I_{\mathrm{NN}}=0$ ）and spin symmetric（ $\mathrm{S}_{\mathrm{NN}}=1$ ）
What is clear：
＂$K^{-} p p$＂$\rightarrow \Lambda p$ decay requires the isospin to be $I_{\bar{K} N N}=1 / 2$ ．

Presence of kaon requires negative parity for $\bar{K} N N$ ，while both Λ and p are positive．

Thus， $\mathrm{JP}^{\mathrm{P}}=\mathrm{O}^{-}$or $\mathrm{1}^{-}$

In the Λp decay：
The decay must be in P_{-} wave due to the negative parity．

$I(\bar{K} N N) / J^{P}(\overline{\bar{K}} N \times)$	（1／2）／（ 0^{-}）	（1／2）／（ 1^{-}）
NN symmetry	$I(N N)=1, S(N N)=0$	$I(N N)=0, S(N N)=1$
$\begin{aligned} & " K^{-} p p " \\ & I_{3}(\bar{K} N N)=+\frac{1}{2} \end{aligned}$		
	$-\sqrt{\frac{1}{3}}\left(\sqrt{2} K^{-} p p+\bar{K}^{\prime} \frac{p n+n p}{\sqrt{2}}\right) \otimes\left(\frac{\uparrow \downarrow-\uparrow}{\sqrt{2}}\right)$	$\overline{K_{N}} \frac{(p n-n p)}{\sqrt{2}} \otimes\left(\uparrow, \frac{\uparrow \downarrow+\downarrow}{\sqrt{2}}, \psi\right)$
$\begin{aligned} & " \bar{K}^{0} n n " \\ & I_{3}(\bar{K} N N)=-\frac{1}{2} \end{aligned}$		$s \underset{p-\Phi_{n}}{ }=p$
	$-\sqrt{\frac{1}{3}}\left(\sqrt{2} \bar{K}^{0} n n+K^{-} \frac{p n+n p}{\sqrt{2}}\right) \otimes\left(\frac{\uparrow \downarrow-\downarrow \uparrow}{\sqrt{2}}\right)$	$-K^{-} \frac{(p n-n p)}{\sqrt{2}} \otimes\left(\Uparrow, \frac{\uparrow+\downarrow \uparrow}{\sqrt{2}}, \Downarrow\right)$
$\bar{K} N$ coupling	$\frac{\left\|I_{\bar{K} N}=0\right\|^{2}}{\left\|I_{\bar{K} N}=1\right\|^{2}}=\frac{3}{1}$	$\frac{\left\|I_{\bar{K} N}=0\right\|^{2}}{\left\|I_{\bar{K} N}=1\right\|^{2}}=\frac{1}{3}$
$\frac{\sigma_{\bar{K}^{0} n n}}{\sigma_{K^{-} p p}}$	$0.13 \sim 0.15$	~ 0.75

Two possible internal structures： $\mathrm{I}(\mathrm{JP})$ ？

スピンパリティ状態の2つの可能性
$\bar{K} N N: I=1 / 2, J P=0: I_{N N}=1, S_{N N}=0, L_{\bar{K}}=0-$ most likely this is the case，due to stronger $I_{\bar{K} N}=0$
NN（isospin）symmetric（ $I_{N N}=1$ ）and spin anti－symmetric（ $\mathrm{S}_{\mathrm{NN}}=0$ ）
$\bar{K} N N: I=1 / 2, J P=1-: I_{N N}=0, S_{N N}=1, L_{\bar{K}}=0 \quad$－dominant in $I_{\bar{K} N}=1$
NN（isospin）anti－symmetric $\left(I_{N N}=0\right)$ and spin symmetric $\left(S_{N N}=1\right)$

What is clear：
＂$K^{-} p p$＂$\rightarrow \Lambda p$ decay requires the isospin to be $I_{\bar{K} N N}=1 / 2$ ．

Presence of kaon requires negative parity for $\bar{K} N N$ ，while both Λ and p are positive．

Thus， $\mathrm{J}^{\mathrm{P}}=\mathrm{O}^{-}$or $\mathrm{1}^{-}$

In the Λp decay：
The decay must be in P_{-} wave due to the negative parity．

$I(\bar{K} N N) / J^{P}(\overline{\bar{K}} N N)$	（1／2）／（ 0^{-}）	（1／2）／（ 1^{-}）
NN symmetry	$I(N N)=1, S(N N)=0$	$I(N N)=0, S(N N)=1$
$\begin{aligned} & " K^{-} p p " \\ & I_{3}(\bar{K} N N)=+\frac{1}{2} \end{aligned}$		$p \bar{s} \overline{\Phi_{p}-\hat{q}_{n}}-p$
	$-\sqrt{\frac{1}{3}}\left(\sqrt{2} K^{-} p p+\bar{K}^{\prime} \frac{p n+n p}{\sqrt{2}}\right) \otimes\left(\frac{\uparrow \downarrow-\downarrow \uparrow}{\sqrt{2}}\right)$	$\bar{K}^{0} \frac{(p n-n p)}{\sqrt{2}} \otimes\left(\Uparrow, \frac{\uparrow \downarrow+\downarrow}{\sqrt{2}}, \Downarrow\right)$
$\begin{aligned} & " \bar{K}^{0} n n " \\ & I_{3}(\bar{K} N N)=-\frac{1}{2} \end{aligned}$		$s \underset{p-q_{n}}{ }=p$
	$-\sqrt{\frac{1}{3}}\left(\sqrt{2} \bar{K}^{0} n n+K^{-} \frac{p n+n p}{\sqrt{2}}\right) \otimes\left(\frac{\uparrow \downarrow-\downarrow \uparrow}{\sqrt{2}}\right)$	$-K^{-} \frac{(p n-n p)}{\sqrt{2}} \otimes\left(\Uparrow, \frac{\uparrow+\downarrow \uparrow}{\sqrt{2}}, \psi\right)$
$\bar{K} N$ coupling	$\frac{\left\|I_{\bar{K} N}=0\right\|^{2}}{\left\|I_{\bar{K} N}=1\right\|^{2}}=\frac{3}{1}$	$\frac{\left\|I_{\overline{\bar{K}} \times}=0\right\|^{2}}{\left\|I_{\bar{K} N}=1\right\|^{2}}=\frac{1}{3}$
$\frac{\sigma_{\bar{K}^{0} n n}}{\sigma_{K^{-}} p p}$	$0.13 \sim 0.15$	~ 0.75

Λp decay axis and spin axis of $\bar{K} N N$ JP

proton spin orientation referring to the decay axis
$\bar{K} N N: I=1 / 2, J P=0: I_{N N}=1, S_{N N}=0, L_{\bar{K}}=0$

$\bar{K} N N: I=1 / 2, J P=1: I_{N N}=0, S_{N N}=1, L_{K}=0$

symmetric around Kpp decay axis

Orthogonal spin（referring to its motion $\cos \theta=0$ ）can be efficiently measured．

Strong Λ p spin－spin correlation can be measured in $\mathrm{JP}^{\mathrm{P}}=0$ ，not in 1^{-}．

Angular momentum \＆Clebsch－Gordan define spin orientation referring to the decay axis．

How to measure spin－spin correlation 崩烤軸と反䖴轴の相対角度中で测定

－spin asymmetry measurement using $\Lambda \rightarrow p \pi^{-}$\＆$p-C(H)$ scattering－ $p-\mathrm{C}(\mathrm{H})$ scattering sensitive only on ϕ asymmetry

$$
N(\phi) d \phi \propto\left(1+r \cdot \alpha_{\Lambda p} \cos \phi\right) d \phi
$$

r ：scaling factor

$$
r=A_{\Lambda} \cdot A_{p \mathrm{C}} \cdot \vec{S} \cdot \vec{S} \| \cdot c_{c o n v}
$$

$A_{\Lambda}: \Lambda$ asymmetry parameter
$A_{p \mathrm{C}}$ ：proton spin－analyzing－power on carbon（and on p）
$\vec{S} \cdot \vec{S}^{\|}\left(\equiv \vec{S}_{p} \cdot \vec{S}_{p}^{\|}\right)$：spin sensitivity referring to motional axis
$c_{\text {conv }}$ ：convolution coefficient between two asymmetries

Toward JP (spin • parity) study of K-pp with ${ }^{3} \mathrm{He}$ target

＾p spin－spin asymmetry

With new spectrometer，we will conduct

－a systematic study on light kaonic nuclei－

molecule－like hadronic nuclear cluster
＂Does it have a unique shape like a chemical molecule？＂

－in future－
We wish to know
how hadron mass is generated and
physics at high density

Superconducting Solenoid Magnet

[^1]

Proposed K1.8BR Upgrade

- Shortened beam line to enhance Kaon yield $>$ K- yield will increase by ~ 1.4 times @ 1.0 GeV/c

with π / K ratio ~ 2

- realize additional test beam line
Shorten the beam line ($\sim 2.5 \mathrm{~m})$ by
removing the final D5 magnet

Relative beam-line length (\mathbf{m})	D5	D4
Present CDS	0	-3.7
New CDS	+1.2	$\mathbf{- 2 . 5}$

Please collaborate with us，if you are interested in．
…：こでの物理や実験装置に興味があったら是非㙝力しませんか？．．．
‥という訳で, 私は「普通の研究員に戻ります」…

I＇m going back to being an ordinary researcher for three years to conduct a Grant－in－Aid for Specially Promoted Research－as a play on the Candy＇s retirement in 1977—
…なんと50年近く前…今どきの若者には通用しないか…

Yet Another Extension：

$\bar{K} \bar{K}$ bound state via \bar{p} annihilation？
ϕN bound state via \bar{p} annihilation？
さらなる発展の可能性?
arXiv：2212．12690
Evidence of a p－ϕ bound state
Emma Chizzali ${ }^{a, b, *}$ ．Yuki Kamiya ${ }^{c, d, * *}$ ，Raffaele Del Grande ${ }^{b}$ ， Takumi Doi d ，Laura Fabbietti ${ }^{b}$ ，Tetsuo Hatsuda ${ }^{d}$ ，and Yan Lyu ${ }^{d, e}$

The possibility of the existence of a ϕN bound state（ $J=1 / 2$ ）as a novel molecular hadron cluster has been pointed out．This is consistent with $\phi \phi$ dominance near the production

 threshold of the $\bar{p} p$ reaction channel．

If exist，nuclear Φ bound states search is of interest

ϕN bound state search？

$$
\begin{gathered}
\text { 分子状ハドロン等更なる } \\
\text { エキゾチックハドロン探査? }
\end{gathered}
$$

Thank You for Attention！

次世代に更なる面向い物理の発展を期待します！

Bonus topics：

－What I learned with the Talk－
 おまけ：トークを通して気づけたこと等

Bonus topic 1：

トークすることで気づけたことなど

It is important：

When you make matters clear and organized，you may realize the essence of a problem that you were not aware of，and you may also have more perspective view to identify a better way to resolve a problem．

In the talk，I realized that my materials in not sufficiently
clear and organized，so I updated the this materials．
问題を整理し人に伝える必要のあるトークをすることは，问題を俯瞰的に捉える視野を醸成し本質を捉えるのに役立 つ。十分整理されていなかった点は以下にまとめ直す。

Bonus topic 2：

The critical questions：

En＇yo－san raised question：＂What will you do，if the charge mirror state \bar{K}^{0} nn do not exist？＂
鏡像核が存在しなかったらどうするのか？
As the sign of the existence already seen in the analysis，speculating about the non－existent is a pointless exercise，often termed the devil＇s proof as it is impossible to prove．
存在の非候が見えている以上，存在しない可能性に思い煩うのは無為
Instead，we aim to verify the signs of existence that we have seen in our experimental study of the $\pi^{-} \Lambda p+p^{\prime}$ final state．
むしろ $\pi^{-} \Lambda p+p^{\prime}$ 终状態研究で見えた镜像核の存在北候を検証したい
トークで受けた気が付きにくい実験バイアスに関する指摘

Bonus topic 3：

実験家への有用な情報

Possible bias generated in mixed－trigger：

－mentioned by K．Itahashi

To study the systematic error，we often utilize Mixed Trigger，but it may fake us on DAQ efficiency．

To study the systematic error，we usually utilize Mixed Trigger，but it may fake us on DAQ efficiency．Y．Tanaka realized that the DAQ efficiency is not a general number，but it differs for trigger conditions．－Self－inefficiency for pre－scaled trigger is very low by definition，but the inefficiency caused by pre－scaled trigger to the crucial one is not．Thus，the stability of the DAQ efficiency shall be studied as a function of pre－scaling factors in a systematic manner，if one wish to apply mixed－trigger on an experiment．It may fake us on the total cross section！
隐れたバイアスの例…

Bonus topic 4：

To improve effectiveness in enforcing compliance with the rules：

One needs a reason to follow，especially for Scientist who trained to raise question even to the textbook or supervisor，and requested not to follow blindly．

Ex．Rule：Never cross a crosswalk at a red light．

I followed the rule ever since I was asked＂what ethical responsibility can you take，if some children imitates you in time and involved in a car accident？＂
ルールは強制ゲはなく共感を…

兓親会での集合写真

[^0]: ... analyzed by T. Yamaga

[^1]: 建設中の新型スペクトロメータの現状

