IWASK2024 (Interdisciplinary Workshop for Advanced Science of Kaon and related topics) @ RIKEN

March 5, 2024

Exotic-atom experiments pioneered by cryogenic detectors (極低温検出器で拓くエキゾチック原子の物理)

Shinji OKADA (Chubu Univ.)

a project to apply TES to accelerator experiments

-S

自己紹介

岩崎 13 ⁴	研 氏 現	【 氏名 :岡田 信二(オカダ シンジ) 現所属:中部大学 理工学部 数理・物理サイエンス学科 ミュオン理工学研究センター					
1999 2000 2001 2002 2003	東京工業大学	修士・博士課程 東工大岩崎研 (ほとんどKEKで過ごす)	ハイパー核研究 @ KEK				
2004 2005 2006 2007	理化学研究所	基礎科学特別研究員 +協力研究員 (岩崎先端中間子研)	エキゾチック原子研究 (K中間子ヘリウム) <mark>@ KEK</mark> - KEK 陽子シンクロトロン(PS) 最後の実験				
2008 2009 2010 2011	イタリア国立 核物理研究機構 マラスカティ研究所	Postdoc Fellow for non-Italian citizens	エキゾチック原子研究 (K中間子水素) @ イタリアINFN (e⁺ e⁻ 衝突型加速器 DAΦNE)				
2012 2013 2014 2015	理化学研究所	協力研究員 (岩崎先端中間子研)	ミュオン研究 (muon g-2) @ 英国RAL, カナダTRIUMF 次世代エキゾチック原子超精密分光 @ スイスPSI, J-I				
2016 2017 2018 2019	理化学研究所	協力研究員 (東原子分子物理研)	超伝導検出器を用いた原子物理研究 @ J-PARC (ミュオン), RIKEN RICE (東研), SPring-8				
2020 2021 2022 2023	中部大学	准教授 教授	ミュオン触媒核融合研究 @ 中部大学, J-PARC				

ン П <u>*/</u> ハ K中間子水素) @ イタリアINFN-LNF ^Z超精密分光 @ スイスPSI, J-PARC |||

ン

 \mathbf{t}

Ч

HEATES project

High-resolution Exotic Atom x-ray spectroscopy with TES

History

Results

3 publications & a new measurement

(a)	Kaonic atom	Phys. Rev. Lett. 128, 112503 (<mark>2022</mark>).	a single sharp X-ray peak
(b)	Muonic atom	Phys. Rev. Lett. 130, 173001 (<mark>2023</mark>).	(absolute energy)
(C)	Muonic atom ~Serendipity~	Phys. Rev. Lett. 127, 053001 (<mark>2021</mark>).	a broad structure
(d)	Muonic molecule	New experiment (to be published)	(complex of many X-ray lines)

Results

3 publications & a new measurement

(a)	Kaonic atom	Phys. Rev. Lett. 128, 112503 (<mark>2022</mark>).	a single sharp X-ray peak	
(b)	Muo atom	Phys. Rev. Lett. 130, 173001 (2023).	(absolute energy)	
(C)	Muc stom ~Se pity~	Phys. Rev. Lett. 127, 053001 (2021).	a broad structure	
(d)	Muonic molecule	New experiment (to be published)	(complex of many X-ray lines)	

Contents

1. Exotic atoms

Negatively-charged Kaon & Muon

having the **longest lifetimes** among the second-generation particles and composite particles in the Standard Model of particle physics.

What is exotic atom?

When a negative-charged particle is stopped in a material, it can replace an electron to form a exotic atom

(inversely proportional to their reduced mass)

These radii are as small as 1/200 (µ⁻ atom) and 1/1000 (K⁻ atom) compared to the normal atoms.

Image of the scale

Extremely close to the nucleus !

Bohr radius

*R*_μ ~ 1/200 *R*_e (μ⁻ atom)

- ✓ μ^{-} feels an **extremely large electric field**
 - internal electric field strength is proportional to the squire of the mass ratio to atoms (→ being 200² (=40,000) times higher than that of normal H-like ions.)

Study of "QED under strong field"

QED : Quantum ElectroDynamics

R_K ~ 1/1000 *R_e* (K⁻ atom)

11

- ✓ Unlike μ -, K⁻ feels an "strong interactions".
 - The energy level of K- atoms shifts due to the strong interaction with the nucleus.

Study of "Strong interaction"

1. What's TES

- 1. incident particles absorbed
- 2. Energy $\Delta E \rightarrow$ Phonon

3. Tiny temperature rise is measured by a highly sensitive temperature sensor **TES**

Reference : Bennet et al., Rev. Sci. Instrum. 83, 093113 (2012)

Reference : Bennet et al., Rev. Sci. Instrum. 83, 093113 (2012)

Adiabatic Demagnetization Refrigerator (ADR)

✓ Cooled down to 70 mK with ADR & pulse

<u>102 DENALI</u>

Pulse Tube ADR Cryostat

Vacuum Jacket Size 33 cm X 22 cm X 66 cm Tall

Experimental Volume 24 cm X 15 cm X 14 cm Tall

1st Stage Cooling Power 25 W @ 55 K

2nd Stage Cooling Power 0.7 W @ 4.2 K

GGG Cooling Capacity **1.2 J @ 1 K** (< 500 mK @ GGG)

ADR Base Temperature <50 mK

FAA Cooling Capacity 118 mJ @ 100 mK

TES

chip

TES array

✓ 4-µm-thick Bi absorber (eff.~ 85% @ 6 keV)

✓ 240 pixels
✓ 23 mm² eff. area

Φ~1 cm

small pixel size -> multi-pixel array

NIST

photo credit:

D.R. Schmidt

TES array

✓ Mo-Cu bilayer TES

The typical K-atom X-ray rate is **1** count / hour / array

NIST

3. Experiments

J-PARC

Japan Proton Accelerator Research Complex

Experimental setup

observing a single sharp peak to measure an absolute value of X-ray energy

(3-1) Kaonic atom

Kaonic atom X-rays

Scattering length & potential

Heavier kaonic atoms → Attractive optical potential

Kaonic helium : experiments

Kaonic helium : theoretical values

Special interest in connection with light kaonic nuclei

- ✓ Is there large shift > 1 eV, and width > 5 eV ?
- ✓ Sign of the shift ? (attractive shift \rightarrow no p-wave nuclear bound state?)

→ eV-scale energy resolution is mandatory

Need one-order better precision

Need one-order better precision

Operation of cryogenic systems

(28 He refills & 27 mag cycles)

In-beam energy calib. (X-ray tube)

✓ X-ray tube was always ON during the experiment
✓ Pixel-by-pixel calibration every 4~8 hours

Charged particle hit

Charged particle hit

If charged particle hit on the detector pixel, it deposits ~10 keV energy (Bi 4um), which become severe background in the spectrum

Charged particle hit

If charged particle hit on the Si substrate, heat will spread out throughout the array, making small bump signals in many pixels If charged particle hit on the detector pixel, it deposits ~10 keV energy (Bi 4um), which become severe background in the spectrum

Pulse height distribution in array

Charged particle identification

- No difference in the primary pulses between X-rays and charged particles
- If we look at neighboring pixels, we can reject half of the charged particles

Timing resolution

Timing vs. dE (energy deposit)

requiring the energy deposit to be larger than 16 MeV to select low momentum kaons which are likely to stop in the target.

Kaonic X-ray spectra

Syst. error : mainly from the uncertainty in absolute energy scale

Comparison with past experiments

observing a broad structure (being complex of many X-ray lines)

(3-2) Muonic molecule

Scaled image, again

Muonic molecule

Compared to the reach of nuclear force (a few fm), it becomes small enough to allow nuclear reactions to occur within the molecule.

Fusion

Muon-Catalyzed Fusion (µCF)

Muon-Catalyzed Fusion (µCF)

How µ molecules are created ?

If the muonic atom collide "**gently**" to the normal molecule, the excess energy of ddµ molecule formation is passed to the rovibrational excitation energy of D₂ molecule.

 \Rightarrow Resonant generation (Vesman mechanism)

Molecule in molecule !

Key point of the new µCF process

Dissociation of excited molecules

spectroscopy

Inflight µCF study

µCF cycle considering "excited molecules"

 \rightarrow So it is important to study the mechanism to enhance the IFµCF process.

Importance of dtµ* was demonstrated

⇒ Aiming for direct experimental verification

High Precision Spectroscopy of Muonic Molecules

Theory : Few-body calculations simultaneously solving for the motion of nuclei and heavy negatively charged particles

Experimental : High energy resolution in X-ray measurements in muon beams

Difficulty of the measurement

New TES : Less tail component

Experimental setup

Photo at beamline

Energy vs. Time

Timing cut

4. Summary & Outlook

Summary

The following advantages of TES have made it possible to conduct accelerator experiments that were not possible before

1. Combination of energy resolution and detection efficiency (multi-pixel) Kaonic atoms

High-precision absolute energy measurement for very rare events

Covering a wide energy range with high resolution
Muonic molecule
Interesting broad structures are now visible in detail. This

Interesting broad structures are now visible in detail. This was not possible with the crystal spectrometer.

Developed TES for high-energy X-rays

Name	5 keV TES	10 keV TES	50 keV TES	100 keV TES
Saturation energy	10 keV	20 keV	70 keV	150 keV
Readout system	TDM	TDM	microwave	microwave
Absorber thickness (material)	0.965 µm (Au)	4.1 µm (Bi)	1.85 μm (Au) & 20 μm (Bi)	0.5 mm (Sn)
Absorber area	0.34 x 0.34 mm ²	0.320 x 0.305 mm ²	0.73 x 0.73 mm ²	1.3 x 1.3 mm ²
Absorber collimated area	0.28 x 0.28 mm ²	0.305 x 0.290 mm ²	0.67 x 0.67 mm ²	(no collimator)
Number of pixel	192	240	96	96
Total collection area	15.1 mm ²	21.2 mm ²	43.1 mm ²	162 mm²
ΔE (FWHM)	5 eV @ 6 keV	5 eV @ 6 keV	20 eV @ 40 keV (8 eV @ 17 keV)	60~70 eV @ 130 keV

Existing TES (have been using since 2016)

Brand-new TES detector

(brought from NIST this January)

Outlook

A new proposal application (muon S1 type) are being submitted for various experiments using this new TES system, very recently.

- ✓ Metastable muonic molecules (related to μ CF study)
- ✓ Nuclear radius
- ✓ Non-destructive analysis

I was allowed **to research freely** and our research is blossoming from **Kaon to Muon**. Thank you very much, Prof. Iwasaki-san. **Happy retirement !**