Kaonic nuclear bound states： ＂Discovery＂and beyond

Tadashi Hashimoto（ASRC，JAEA）
研修生（2009～），JRA（2011），SPDR（2014～2017）

Related members since 2009

- Permanent staffs
- M. Iwasaki, H. Outa, K. Itahashi,
- H. Ohnishi, F. Sakuma, Y. Ma
- Post-docs
- M. Iio, S. Okada, M. Sato, K. Tsukada,
- T. Yamaga, H. Asano, R. Murayama
- Students (JRA, IPA, \cdots)
- T. Hiraiwa, Y. Sada, M. Tokuda, H. Kou,
- Q. Zhang
- J-PARC E15/E17/E31/E57/E62/E73/T77/E80/P89 collaborations

Meson in nuclei

- In nuclei, mesons appear as viatual particles and form nuclear potential (Yukawa theorem)
- In vacuum, mesons are real particles having own intrinsic masses (cf. meson beam)
meson

Can meson be a constituent particle forming nuclei?
If yes, how do meson and core nucleus change?
$\Lambda(1405)$ in chiral unitary model T. Hyodo

- Strong attraction in $\mathrm{I}=0$ from scattering and X -ray experiements.
- $\Lambda(1405)=\bar{K} N$ molucle picture is now widely accepted

Why not kaonic nucleus with additional nucleons?

Kaon in nuclei

(a) ${ }^{3} \mathrm{He}$

A. Dote, H. Horiuchi, Y. Akaishi and T. Yamazaki, Phys. Lett. B 590 (2004) 51

Compact system?
\rightarrow nucleon overlaps? dense matter?

$K^{-} p p$

$\bar{K} N$ attraction \& $N N$ replusion \rightarrow molecule-like structure?

Two approaches for kaonic systems

A series of experiments at J-PARC K1.8BR Probe different energy, density, and isospin

The simplest kaonic nucleus $\bar{K} N N\left(I=1 / 2, J^{P}=0^{-}\right)$

Experiments

- FINUDA: $\left(K_{\text {stopped }}^{-}, \Lambda p\right)$
- DISTO: $p p \rightarrow \Lambda p K^{+}$
- J-PARC E27: $d\left(\pi^{+}, K^{+}\right) X$

Null results

- LEPS: $p\left(\gamma, \pi^{-} K^{+}\right) X$
- HADES: $p p \rightarrow \Lambda p K^{+}$
- AMADEUS: $\mathrm{C}\left(K_{\text {stopped }}^{-}, \Lambda p\right)$
- Theoretical calculations agree on the existence of $\bar{K} N N$, although B.E. and Γ depend on the $\bar{K} N$ interaction models.
- Heaviear systems, $\bar{K} N N N, \bar{K} N N N N, \ldots$ should also exist
- However, no conclusive experimental evidence before us.

Our approach: in-flight (K-, n)

T. Kishimoto, Phys. Rev. Lett. 83, 4701 (1999).

\checkmark Effectively produce sub-threshold virtual \bar{K} beam
\checkmark Most of background processes can be kinematically separated.
\checkmark Simplest target allow exclusive analysis.
\checkmark Cover a wide range of kinematical region

J-PARC K1.8BR as of 2012

liquid 3 He target system

neutron counter charge veto counter proton counter

Forward neutron semi-inclusive spectrum

Exclusive analysis: ${ }^{3} \mathrm{He}\left(K^{-}, \Lambda p\right) n$

Observation of a $\bar{K} N N$ bound state in the ${ }^{3} \mathrm{He}\left(K^{-}, \Lambda p\right) n$ reaction

T. Yamaga, ${ }^{1, *}$ S. Ajimura, ${ }^{2}$ H. Asano, ${ }^{1}$ G. Beer, ${ }^{3}$ H. Bhang, ${ }^{4}$ M. Bragadireanu, ${ }^{5}$ P. Buehler, ${ }^{6}$ L. Busso, ${ }^{7,8}$ M. Cargnelli, ${ }^{6}$ S. Choi, ${ }^{4}$ C. Curceanu, ${ }^{9}$ S. Enomoto, ${ }^{14}$ H. Fujioka, ${ }^{15}$ Y. Fujiwara, ${ }^{12}$ T. Fukuda, ${ }^{13}$ C. Guaraldo, ${ }^{9}$ T. Hashimoto, ${ }^{20}$ R. S. Hayano, ${ }^{12}$ T. Hiraiwa, ${ }^{2}$ M. Ioo, ${ }^{14}$ M. Iliescu, ${ }^{9}$ K. Inoue, ${ }^{2}$ Y. Ishiguro, ${ }^{11}$ T. Ishikawa, ${ }^{12}$ S. Ishimoto, ${ }^{14}$ K. Itahashi, ${ }^{1}$ M. Iwai, ${ }^{14}$ M. Iwasaki, ${ }^{1, \dagger}$ K. Kanno, ${ }^{12}$ K. Kato, ${ }^{11}$ Y. Kato, ${ }^{1}$ S. Kawasaki, ${ }^{10}$ P. Kienle, ${ }^{16, \ddagger}$ H. Kou, ${ }^{15}$ Y. Ma, ${ }^{1}$ J. Marton, ${ }^{6}$ Y. Matsuda, ${ }^{17}$ Y. Mizoi, ${ }^{13}$ O. Morra, ${ }^{7}$ T. Nagae, ${ }^{11}$ H. Noumi, ${ }^{2,14}$ H. Ohnishi, ${ }^{22}$ S. Okada, ${ }^{23}$ H. Outa, ${ }^{1}$ K. Piscicchia,,${ }^{24,9}$ Y. Sada, ${ }^{22}$ A. Sakaguchi, ${ }^{10}$ F. Sakuma, ${ }^{1}$ M. Sato, ${ }^{14}$ A. Scordo, ${ }^{9}$ M. Sekimoto, ${ }^{14}$ H. Shi, ${ }^{6}$ K. Shirotori, ${ }^{2}$ D. Sirghi, ${ }^{9,5}$ F. Sirghi, ${ }^{9,5}$
S. Suzuki, ${ }^{14}$ T. Suzuki, ${ }^{12}$ K. Tanida, ${ }^{20}$ H. Tatsuno, ${ }^{21}$ M. Tokuda, ${ }^{15}$ D. Tomono, ${ }^{2}$ A. Toyoda, ${ }^{14}$ K. Tsukada, ${ }^{18}$ O. Vazquez Doce, ${ }^{9,16}$ E. Widmann, ${ }^{6}$ T. Yamazaki, ${ }^{12,1}$ H. Yim, ${ }^{19}$ Q. Zhang, ${ }^{1}$ and J. Zmeskal ${ }^{6}$ (J-PARC E15 Collaboration)

$\Lambda p n$ event selection

missing neutron selection

. $\Lambda p n$ events are selected with ~80\% purity.
. $\sim 20 \% \Sigma^{0} p n / \Sigma^{-} p p$ contamination

Obtained spectrum in J-PARC E15

2D Fit for the " $\bar{K} N N$ " state

$0.3<\mathrm{q}_{x}<0.6 \mathrm{GeV} / \mathrm{c}$: Signals are well separated from other process

Fit with PWIA

$\mathbf{B}_{\text {Kpp }} \sim \mathbf{4 0} \mathrm{MeV}, \Gamma_{\mathrm{Kpp}} \sim 100 \mathrm{MeV} \quad \mathbf{Q}_{\text {kpp }} \sim \mathbf{4 0 0} \mathrm{MeV}$ (c.f. $\mathrm{Q}_{\mathrm{Qf}} \sim 200 \mathrm{MeV}$)
\rightarrow large binding energy
\rightarrow wide momentum transfer
(K, n) reaction on other targets J-PARC E15

(K-, n) reaction on other targets

\[

\]

PLB837,137637(2023)

With two-step reaction processes
S-wave $\bar{K} N$ amplitude (l=0) was deduced pole: 1417.7-26.1i [MeV]

Is the observed state really $\bar{K} N N$?

- Isospin partner should exist
- $\Lambda n, \Sigma^{-} p$ analysis

$$
\bar{K} N N(I=1 / 2) \begin{aligned}
& I_{z}=+1 / 2 \quad K^{-} p p-\bar{K}^{0} p n \\
& I_{z}=-1 / 2 \quad K^{-} p n-\bar{K}^{0} n n
\end{aligned}
$$

- need neutron detection
- Spin-parity measurement:
- spin-spin correlation between \wedge and p
- need polarimeter for proton

(b) $J^{P}=1^{-}$case

How compact is the system?

- Momentum-transfer distribution
- large S-wave gauss. form factor
- Q ~ $400 \mathrm{MeV} / \mathrm{c}$
- Decay branching ratio

- $\bar{K} N N \rightarrow \Lambda N$ vs. $\bar{K} N N \rightarrow \pi Y N_{s}$

T. Sekihara et al., Phys. Rev. C 86 (2012) 065205
- $\bar{K} N N N \rightarrow \Lambda d$ vs. $\bar{K} N N N \rightarrow \Lambda N N_{s}$
- forward nucleon detection would be useful: $K^{-}+{ }^{3} \mathrm{He} \rightarrow \bar{K} N N+N$ forward TOF
- Momentum of the "spectator" nucleon

How general are the Kbar-nuclei?

Exclusive analysis becomes difficult. \rightarrow Inclusive + tag.

New CDS

Superconducting

Neutron Counter
Cylindrical Drift Chamber
x1.5 larger solid angle x5 higher neutron detection eff.

(proton polarimeter, forward TOF detectors)

Construction status

Superconducting coil

Cylindrical Drift Chamber

Cylindrical Neutron Counter

- JFY2024: complete solenoid
- JFY2025: start installation
. JFY2026: first beam?

Summary

- Anti-kaon could be a unique probe for hadron physics. We are performing systematic experiments at J-PARC.
- $\bar{K} N N$ signals are observed in ${ }^{3} \mathrm{He}\left(\mathrm{K}^{-}, \Lambda \mathrm{p}\right) \mathrm{n}$ channel.
- $\bar{K} N N N$ hint in ${ }^{4} \mathrm{He}\left(\mathrm{K}^{-}, \Lambda \mathrm{d}\right) \mathrm{n}$ events in a test experiment.
- New-generation experiment starts from JFY2026 with a new solenoid spectrometer
- Looking for more collaborators including theorists!

