

研修生 (2009~) SPDR(2015~) part timer (2016) @ Iwasaki lab.

Nishi Takahiro

Collaborators

DeukSoon Ahn, Georg P.A. Berg, Masanori Dozono, Daijiro Etoh, Hiroyuki Fujioka, Naoki Fukuda, Nobuhisa Fukunishi, Hans Geissel, Emma Haettner, Tadashi Hashimoto, Ryugo S. Hayano, Satoru Hirenzaki, Hiroshi Horii, Natsumi Ikeno, Naoto Inabe, Kenta Itahashi*, Sathoshi Itoh, Masahiko Iwasaki, Daisuke Kameda, Shouichiro Kawase, Keichi Kisamori, Yu Kiyokawa, Toshiyuki Kubo, Kensuke Kusaka, Hiroaki Matsubara, Masafumi Matsushita, Shin'ichiro Michimasa, Kenjiro Miki, Go Mishima, Hiroyuki Miya, Daichi Murai, Yohei Murakami, Hideko Nagahiro, Masaki Nakamura, Megumi Niikura, Takahiro Nishi**, Shumpei Noji, Kota Okochi, Shinsuke Ota, Naruhiko Sakamoto, Kimiko Sekiguchi, Hiroshi Suzuki, Ken Suzuki, Motonobu Takaki, Hiroyuki Takeda, Yoshiki K. Tanaka, Koichi Todoroki, Kyo Tsukada, Tomohiro Uesaka, Yasumori Wada, Yuni N. Watanabe, Helmut Weick, Hiroyuki Yamada, Hiroki Yamakami, Yoshiyuki Yanagisawa and Koichi Yoshida fRC

IRC

RIKEN, Nishina Center, Department of Physics, University of Tokyo, JINA and Department of Physics, University of Notre Dame, Department of Physics, Tohoku University, Department of Physics, Kyoto University, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Department of Physics, Nara Women's University, University of Tokyo, CNS, Osaka University, Tohoku University,

56 collaborators

*spokesperson, ** co-spokesperson

BigRIPS

Deeply bound pionic atoms

N. Ikeno *et al.*, PTP126(2011)483.

$B_{1s}^{\pi}/\Gamma_{1s}^{\pi}$ and chiral symmetry in medium

BE, Γ of 1*s* pionic state ⇔ strong interaction effect

π-A s-wave optical potential (s-wave) $V_s(r) = -\frac{2\pi}{\mu} [\epsilon_1 \{b_0 \rho + b_1 \delta \rho\} + \epsilon_2 B_0 \rho^2]$

$$\frac{\langle q\bar{q}\rangle_{\rho=\rho}}{\langle q\bar{q}\rangle_{\rho=0}} = \left(\frac{b_1(0)}{b_1(\rho)}\right)^{1/2} \left(1 - \gamma \frac{\rho}{\rho_0}\right)$$

 $\approx \gamma = 0.184 \pm 0.003$

D. Jido T. Hatsuda, T. Kunihiro, PLB 670, 109(2008).

 $\langle q\bar{q} \rangle \Leftrightarrow$ Chiral symmetry in medium is probed by pionic atom!

N. Ikeno et al., Prog. Theor. Phys. 126 (2011) 483. S. Itoh, Doctoral Dissertation, Univ. of Tokyo (2011)

B_{1s}^π / **Γ**_{1s}^π and chiral symmetry in medium

BE, Γ of 1*s* pionic state ⇔ strong interaction effect

 π -A s-wave optical potential (s-wave) $V_{s}(r) = -\frac{2\pi}{\mu} [\epsilon_{1} \{b_{0}\rho + b_{1}\delta\rho\} + \epsilon_{2}B_{0}\rho^{2}]$

$$\frac{\langle q\bar{q}\rangle_{\rho=\rho}}{\langle q\bar{q}\rangle_{\rho=0}} = \left(\frac{b_1(0)}{b_1(\rho)}\right)^{1/2} \left(1 - \gamma \frac{\rho}{\rho_0}\right)$$

 $\approx \gamma = 0.184 \pm 0.003$

D. Jido T. Hatsuda, T. Kunihiro, PLB 670, 109(2008).

 $\langle q\bar{q} \rangle \Leftrightarrow$ Chiral symmetry in medium is probed by pionic atom!

W. Weise, Nucl. Phys. A, vol. 553, pp. 59–72, Mar. 1993.

Conventional production; π - beam

Yamazaki *et al,* Phys. Rep. 514, 1(2012)

This method can NOT produce "deeply-bound" pionic atom...

x rays during atomic cascade → higher orbits / light nuclei (~²⁴Mg for 1s)

pionic 1s state in H \rightarrow b₁ in vacuum H. Schröder et al., Eur. Phys. J. C 21, 473 (2001).

 $\Gamma_{abs} > \Gamma_{rad}$ for deep orbit in heavy nuclei absorption is faster

Direct production: (*d*,³He) reaction

³He kinetic energy

Recoilless \rightarrow angular momentum transfer = 0 $(1s)_{\pi} \otimes (3s_{1/2})_n^{-1}$ etc... are relatively enhanced!

Prior research: Experiment at GSI

experimental spectrum for pionic ²⁰⁵Pb@GSI

Prior research: Experiment at GSI

K. Suzuki et al., PRL92 072302 (2004)

Systematic study of pionic Sn isotopes ~ 2 month measurement for 3 isotopes (w/ detector tuning etc...)

Extract b₁ from exp. data at GSI

Contour plot of χ^2

 $* b_0$, ReB₀ are deduced from data of light / symmetric pionic atoms

π-A s-wave optical potential $V_{s}(r) = -\frac{2\pi}{\mu} [\epsilon_{1} \{b_{0}\rho + b_{1}\delta\rho\} + \epsilon_{2}B_{0}\rho^{2}]$

error of b₁ in medium is still large compared with that in vacuum!! two main sources are

- experimental error
- neutron distribution ambiguities

To extract b₁ with higher precision improve resolution / calibration systematic study by Isotope shift

10

Comparison between RIBF and GSI

GSI facilities

	GSI (FRS)	RIBF (BigRIPS)	Improvement
intensity	~ 10 ¹¹ / 6 s (1 spill)	~ 10¹²/ s	× 60
angular acceptance (H / V)	15 / 10 mrad	40 / 60 mrad	×16
resolution (FWHM)	400 keV	200 ~ 300 keV	improve

RIKEN RIBF facilities

by dispersion matching optics cf. $\Gamma_{1s} \sim 300$ keV

Experimental setup at RIBF

RIKEN Fragment Separator BigRIPS

Superconducting Ring Cyclotron

³He ~ 10²Hz $p \sim 10^{5} \, \text{Hz}$ (signal) (break up/ background) F0 Target (strip) Beam Transfer line *SRC* d beam 250 MeV/u ~ 10¹²/s

Experimental setup at RIBF : pID

ToF_{F5F7}

³He ~ 10²Hz $p \sim 10^{5} \, \text{Hz}$ (break up/ background) (signal)

Experimental setup at RIBF : tracking

RIKEN Fragment Separator BigRIPS

³He ~ 10²Hz $p \sim 10^{5} \, \text{Hz}$ (signal) (break up/ background)

Experimental setup at RIBF : optics tuning

Dispersion matching: Eliminate contribution of beam momentum spread

$\times w/usual primary beam settings, the contribution become ~ 800 keV (FWHM)$

Experimental setup at RIBF : optics tuning

design values: $S_{11} = -1.8 A_{16} = 44.6 mm/\%$ (dispersion in transport line) $C = 1.31 S_{16} = 62 mm/\%$

16

Experimental setup at RIBF : optics tuning

Use BigRIPS as a diagnostics of BT line

After phenomenological tuning, dispersion is improved to be 28 mm/% \Leftrightarrow reduce the contribution of δp by ~ 40%

After optimization of primary beam emittance \rightarrow contribution ~ 220 keV

(cf. designed value: 44.6 mm/%)

The difference may be caused by the optics inside SRC

Experimental setup at RIBF : optical correction

Acceptance correction reproduced by MC simulation (MOCADI)

Optical correction by 3rd-order matrix element

5	00
4	50
4	00
3	50
3	00
2	50
2	00
1	50

18

Experimental setup at RIBF : calibration

19

 E_{3He} at center of focal plane = 362.458 ± 0.003 (stat.) ± 0.005 (sys.) [MeV] (Ambiguity of the primary beam energy is not included)

Experimental setup at RIBF : tracking

BigRIPS

Polot experiment @ RIKEN in 2010

- (grow up with finite reaction angle)

*N. Ikeno et al., Eur. Phys. J. A 47, 161 (2011)

Polot experiment @ RIKEN in 2010

- 0.2 0.6 0.4 0.8
- θ_{reaction} dependence
- \rightarrow S_{1s}^{exp} \Rightarrow S₁ $S_{2p}^{exp} = S_{2p}$

→ well reproduced by theoretical calculation absolute value of the reaction cross section

Is ^{theory} × 0.17	Angular configuration is well understoo
p ^{theory} × 0.8	Angular dependences are almost repro
	quite well except S _{1s} /S _{2p} ratio.
	Missing factor for reaction dynamics ??

Precision measurement @ RIKEN in 2014: 117,121Sn

Presicion measurement (~11 days) target: ¹²²Sn, ¹¹⁷Sn goal : precision measurement of pionic states in ¹²¹Sn

improve optics

first measurement of pionic states in odd nuclei

\rightarrow improve resolution

• simultaneous measurement of 1s, $2p \rightarrow$ reduce systematic error

Precision measurement @ RIKEN in 2014: ¹²¹Sn

Precision measurement @ RIKEN in 2014: ¹²¹Sn

Deduce b1 parameter from Bⁿ, Гⁿ

b₁, **ImB**₀: to reproduce experimental results.

$$V_{s}(r) = -\frac{2\pi}{\mu} [\epsilon_{1} \{b_{0}\rho + b_{1}\delta\rho\} + \epsilon_{2}B_{0}\rho^{2}]$$

 \cdot bo, ReBo:

simultaneous fit with symmetric light nuclei (¹⁶O, ²⁰Ne, ²⁸Si)

• p-wave parameters (c_0 , c_1 , ReC₀, ImC₀): fixed to global fit results ※ E. Friedman and A. Gal, Nucl. Phys. A 724 (2003)

Improved points for the analysis

neutron distribution (p-elastic exp. @RCNP)

- Effective number approach ⇔ Green function method[※]
- Residual interaction between pion and neutron hole^{**}
- modification of absorption term ($\rho_p^2 + 2\rho_n\rho_p + \rho_n^2$)
- new spectroscopic factor data. Szwec et al., Phys. Rev. C 104, 054308 (2021).

Solve Klein-Gordon equation and search best parameter

※ N. Ikeno et al., Prog. Theor. Exp. Phys. 2015, 033D01 (2015). XX N. Nose-Togawa et al., Phys. Rev. C 71, 061601 (2005).

Deduce b1 parameter from Bⁿ, Гⁿ

b₁, **ImB**₀:

Solve Klein-Gordon equation and search best parameter to reproduce experimental results.

-0.08

- Analysis method improvement $\rightarrow \Delta b_1 \sim 0.02$
- · 1s state info. alone does not determine b1 precisely at RIKEN exp.

Deduce b1 parameter from Bⁿ, Гⁿ

b₁, **ImB**₀:

to reproduce experimental results.

b₁ in vacuum

bability Pro

Solve Klein-Gordon equation and search best parameter

-0.08

-0.08

B_{1s} / **Γ**_{1s} in ^{115, 119, 123} Sn @ GSI (re-analyzed) B_{1s} / Γ_{1s} in ¹²¹ Sn @ RIKEN RIBF B_{1s}, B_{2p} / Γ_{1s} , Γ_{2p} in ¹²¹ Sn @ RIKEN RIBF

- Analysis method improvement $\rightarrow \Delta b_1 \sim 0.02$
- · 1s state info. alone does not determine b1 precisely at RIKEN exp.
- b1 is determined most precisely so far from 1s and 2p info. $b_1 = (-0.1163 \pm 0.0056) m_{\pi}^{-1}$

Chiral symmetry in medium

 b_1 in medium \Leftrightarrow chiral symmetry in medium

$$\frac{\langle q\bar{q}\rangle_{\rho=\rho}}{\langle q\bar{q}\rangle_{\rho=0}} = \left(\frac{b_1(0)}{b_1(\rho)}\right)^{1/2} \left(1 - \gamma \frac{\rho}{\rho_0}\right)$$

$$\approx \gamma = 0.184 \pm 0.003$$

D. Jido T. Hatsuda, T. Kunihiro, PLB 670, 109(2008).

 $b_1 = (-0.1163 \pm 0.0056) \text{ m}_{\pi}^{-1}$ $\Leftrightarrow \langle q\bar{q} \rangle_{\rho=\rho} / \langle q\bar{q} \rangle_{\rho=0} = 77 \pm 2 \, [\%] @ \rho_{\text{eff.}}$ $\Leftrightarrow \langle q\bar{q} \rangle_{\rho=\rho} / \langle q\bar{q} \rangle_{\rho=0} = 60 \pm 3 \, [\%] @\rho_{\rm s}$

T. Nishi *et al.*, *Nat. Phys.*, vol. 19, no. 6, pp. 788–793, 2023.

Summary

- Deeply bound pionic atom is a unique "meson in nucleus" system, and is a good probe • for the QCD in finite density.
- RIBF to evaluate the chiral symmetry in medium.
- In the pilot experiment in 2010, we measure the E_{ex} of ¹²¹Sn, and succeeded in - establishment of the experimental method for pionic atom spectroscopy,
 - observation of the angular dependence of (d, 3He) reaction cross section
 - discovery of the discrepancy S_{1s}/S_{2p} in measurement and theoretical prediction.
- In the precision experiment in 2014, we improved experimental/analytical methods and succeeded in
 - Simultaneous and precision measurement of $(1s)_{\pi}$, $(2p)_{\pi}$ state

• So far, we performed the precision measurement of the deeply bound pionic atom at RIKEN

- determination of b₁ with unprecedented precision, which indicate the $\langle q\bar{q}\rangle(
ho_{eff})$ is reduced by 77 ± 2%, corresponding to the 68 ± 3% reduction of $\langle q\bar{q}\rangle(\rho_0)$ with linear extrapolation.

Targets in the experiment at RIKEN

z	112I	113I	114I	115I	116I	117I	118I	119I	120I	121I	122I	123I		ucle	ear	cha	art	
	111Te	112Te	113Te	114Te	115Te	116Te	117Te	118Te	119Te	120Te	121Te	122Te	123Te	124Te	125Te	126Te	127Te	
51	110Sb	111Sb	112Sb	113Sb	114Sb	115Sb	116Sb	117Sb	118Sb	119Sb	120Sb	121Sb	122Sb	123Sb	124Sb	125Sb	126Sb	
	109Sn	110Sn	111Sn	112Sn	113Sn	114Sn	115Sn	116Sn	l17Sn	118Sn	119Sn	120Sn	121Sr	122Sn	123Sr	124Sn	1258n	
49	108In	109In	110In	111In	112In	113In	114In	115In	116In	117In	118In	119In	120In	121In	122In	123In	124In	
	107Cd	108Cd	109Cd	110Cd	111Cd	112Cd	113Cd	114Cd	115Cd	116Cd	117Cd	118Cd	119Cd	120Cd	121Cd	122Cd	123Cd	
47	106Ag	107Ag	108Ag	109Ag	110Ag	111Ag	112Ag	113Ag	114Ag	115Ag	116Ag	117Ag	118Ag	119Ag	120Ag	121Ag	122Ag	
	105Pd	106Pd	107Pd	108Pd	109Pd	110Pd	111Pd	1121	arge	et at	RIB	SF54	exp	perir	nen	t in 2	2010	, 201
45	104Rh	105Rh	106Rh	107Rh	108Rh	109Rh	110Rh	1111	arg	et at	RIB	8F13	5 e >	(per	ime	nt in	202	1
	59		61		63		65		67		69		71		73		N	

, 2014

NuDat2 (https://www.nndc.bnl.gov/nudat2/)

Purpose of the next exp. : Study of density dependence of potential parameters

pionic atoms depend on mass number A

Pionic atoms are known to probe $\sim 0.6\rho_0$

Purpose of the next exp. : Study of density dependence of potential parameters

pionic atoms depend on mass number A

Pionic atoms are known to probe $\sim 0.6\rho_0$

Targets in the experiment at RIKEN

Neutron (N) #

In	In	In	In	In	In
Cd	Cd	Cd	Cd	Cd	Cd
Ag	Ag	Ag	Ag	Ag	Ag
	78		80		82

Current works: beam dynamics x machine learning

not deep learning

Welcome for the various difficult requirements to the primary beam ! (not just beam intensity...)

※ Beam Position Monitor

Thank you for all your support over the past 15 years at the lwasaki Lab.!

